定積分 $\int_{0}^{1} x(x-1)^{4} dx$ を計算します。解析学定積分積分多項式2025/6/211. 問題の内容定積分 ∫01x(x−1)4dx\int_{0}^{1} x(x-1)^{4} dx∫01x(x−1)4dx を計算します。2. 解き方の手順まず、(x−1)4(x-1)^4(x−1)4 を展開します。(x−1)4=x4−4x3+6x2−4x+1(x-1)^4 = x^4 - 4x^3 + 6x^2 - 4x + 1(x−1)4=x4−4x3+6x2−4x+1次に、x(x−1)4x(x-1)^4x(x−1)4 を計算します。x(x−1)4=x(x4−4x3+6x2−4x+1)=x5−4x4+6x3−4x2+xx(x-1)^4 = x(x^4 - 4x^3 + 6x^2 - 4x + 1) = x^5 - 4x^4 + 6x^3 - 4x^2 + xx(x−1)4=x(x4−4x3+6x2−4x+1)=x5−4x4+6x3−4x2+x次に、積分を行います。∫01x(x−1)4dx=∫01(x5−4x4+6x3−4x2+x)dx\int_{0}^{1} x(x-1)^4 dx = \int_{0}^{1} (x^5 - 4x^4 + 6x^3 - 4x^2 + x) dx∫01x(x−1)4dx=∫01(x5−4x4+6x3−4x2+x)dx=[x66−4x55+6x44−4x33+x22]01= [\frac{x^6}{6} - \frac{4x^5}{5} + \frac{6x^4}{4} - \frac{4x^3}{3} + \frac{x^2}{2}]_{0}^{1}=[6x6−54x5+46x4−34x3+2x2]01=[x66−4x55+3x42−4x33+x22]01= [\frac{x^6}{6} - \frac{4x^5}{5} + \frac{3x^4}{2} - \frac{4x^3}{3} + \frac{x^2}{2}]_{0}^{1}=[6x6−54x5+23x4−34x3+2x2]01=(16−45+32−43+12)−(0)= (\frac{1}{6} - \frac{4}{5} + \frac{3}{2} - \frac{4}{3} + \frac{1}{2}) - (0)=(61−54+23−34+21)−(0)=16−45+32−43+12= \frac{1}{6} - \frac{4}{5} + \frac{3}{2} - \frac{4}{3} + \frac{1}{2}=61−54+23−34+21=5−24+45−40+1530= \frac{5 - 24 + 45 - 40 + 15}{30}=305−24+45−40+15=130(5−24+45−40+15)=130(80−64)=130= \frac{1}{30}(5 - 24 + 45 - 40 + 15) = \frac{1}{30}(80 - 64) = \frac{1}{30}=301(5−24+45−40+15)=301(80−64)=3013. 最終的な答え130\frac{1}{30}301