$\int_{-1}^{1} x \arcsin x \, dx$ を計算する問題です。解析学積分部分積分置換積分定積分逆三角関数2025/6/211. 問題の内容∫−11xarcsinx dx\int_{-1}^{1} x \arcsin x \, dx∫−11xarcsinxdx を計算する問題です。2. 解き方の手順部分積分を用いて計算します。u=arcsinxu = \arcsin xu=arcsinx, dv=x dxdv = x \, dxdv=xdx とすると、du=11−x2 dxdu = \frac{1}{\sqrt{1-x^2}} \, dxdu=1−x21dx, v=12x2v = \frac{1}{2}x^2v=21x2 となります。部分積分の公式 ∫u dv=uv−∫v du\int u \, dv = uv - \int v \, du∫udv=uv−∫vdu より、∫−11xarcsinx dx=[12x2arcsinx]−11−∫−1112x211−x2 dx\int_{-1}^{1} x \arcsin x \, dx = \left[ \frac{1}{2}x^2 \arcsin x \right]_{-1}^{1} - \int_{-1}^{1} \frac{1}{2}x^2 \frac{1}{\sqrt{1-x^2}} \, dx∫−11xarcsinxdx=[21x2arcsinx]−11−∫−1121x21−x21dx=12(1)2arcsin(1)−12(−1)2arcsin(−1)−12∫−11x21−x2 dx= \frac{1}{2}(1)^2 \arcsin(1) - \frac{1}{2}(-1)^2 \arcsin(-1) - \frac{1}{2} \int_{-1}^{1} \frac{x^2}{\sqrt{1-x^2}} \, dx=21(1)2arcsin(1)−21(−1)2arcsin(−1)−21∫−111−x2x2dx=12⋅1⋅π2−12⋅1⋅(−π2)−12∫−11x21−x2 dx= \frac{1}{2} \cdot 1 \cdot \frac{\pi}{2} - \frac{1}{2} \cdot 1 \cdot (-\frac{\pi}{2}) - \frac{1}{2} \int_{-1}^{1} \frac{x^2}{\sqrt{1-x^2}} \, dx=21⋅1⋅2π−21⋅1⋅(−2π)−21∫−111−x2x2dx=π4+π4−12∫−11x21−x2 dx= \frac{\pi}{4} + \frac{\pi}{4} - \frac{1}{2} \int_{-1}^{1} \frac{x^2}{\sqrt{1-x^2}} \, dx=4π+4π−21∫−111−x2x2dx=π2−12∫−11x21−x2 dx= \frac{\pi}{2} - \frac{1}{2} \int_{-1}^{1} \frac{x^2}{\sqrt{1-x^2}} \, dx=2π−21∫−111−x2x2dxここで、∫−11x21−x2 dx\int_{-1}^{1} \frac{x^2}{\sqrt{1-x^2}} \, dx∫−111−x2x2dx を計算します。x=sinθx = \sin \thetax=sinθ と置換すると、dx=cosθ dθdx = \cos \theta \, d\thetadx=cosθdθ となり、積分範囲は −π2≤θ≤π2-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}−2π≤θ≤2π となります。∫−11x21−x2 dx=∫−π/2π/2sin2θ1−sin2θcosθ dθ\int_{-1}^{1} \frac{x^2}{\sqrt{1-x^2}} \, dx = \int_{-\pi/2}^{\pi/2} \frac{\sin^2 \theta}{\sqrt{1-\sin^2 \theta}} \cos \theta \, d\theta∫−111−x2x2dx=∫−π/2π/21−sin2θsin2θcosθdθ=∫−π/2π/2sin2θcosθcosθ dθ=∫−π/2π/2sin2θ dθ= \int_{-\pi/2}^{\pi/2} \frac{\sin^2 \theta}{\cos \theta} \cos \theta \, d\theta = \int_{-\pi/2}^{\pi/2} \sin^2 \theta \, d\theta=∫−π/2π/2cosθsin2θcosθdθ=∫−π/2π/2sin2θdθsin2θ=1−cos2θ2\sin^2 \theta = \frac{1 - \cos 2\theta}{2}sin2θ=21−cos2θ なので、∫−π/2π/2sin2θ dθ=∫−π/2π/21−cos2θ2 dθ\int_{-\pi/2}^{\pi/2} \sin^2 \theta \, d\theta = \int_{-\pi/2}^{\pi/2} \frac{1 - \cos 2\theta}{2} \, d\theta∫−π/2π/2sin2θdθ=∫−π/2π/221−cos2θdθ=12[θ−12sin2θ]−π/2π/2=12[(π2−0)−(−π2−0)]=12(π)=π2= \frac{1}{2} \left[ \theta - \frac{1}{2} \sin 2\theta \right]_{-\pi/2}^{\pi/2} = \frac{1}{2} \left[ (\frac{\pi}{2} - 0) - (-\frac{\pi}{2} - 0) \right] = \frac{1}{2} (\pi) = \frac{\pi}{2}=21[θ−21sin2θ]−π/2π/2=21[(2π−0)−(−2π−0)]=21(π)=2πしたがって、∫−11xarcsinx dx=π2−12⋅π2=π2−π4=π4\int_{-1}^{1} x \arcsin x \, dx = \frac{\pi}{2} - \frac{1}{2} \cdot \frac{\pi}{2} = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}∫−11xarcsinxdx=2π−21⋅2π=2π−4π=4π3. 最終的な答えπ4\frac{\pi}{4}4π