次の和を求めよ。 $3\cdot 2 + 6 \cdot 3 + 9 \cdot 4 + \dots + 3n(n+1)$代数学数列シグマ等差数列公式2025/6/211. 問題の内容次の和を求めよ。3⋅2+6⋅3+9⋅4+⋯+3n(n+1)3\cdot 2 + 6 \cdot 3 + 9 \cdot 4 + \dots + 3n(n+1)3⋅2+6⋅3+9⋅4+⋯+3n(n+1)2. 解き方の手順与えられた数列の一般項をaka_kakとおくと、ak=3k(k+1)a_k = 3k(k+1)ak=3k(k+1)となる。よって、求める和は、∑k=1n3k(k+1)=3∑k=1nk(k+1)=3∑k=1n(k2+k)=3(∑k=1nk2+∑k=1nk)\sum_{k=1}^{n} 3k(k+1) = 3\sum_{k=1}^{n} k(k+1) = 3\sum_{k=1}^{n} (k^2+k) = 3(\sum_{k=1}^{n} k^2 + \sum_{k=1}^{n} k)∑k=1n3k(k+1)=3∑k=1nk(k+1)=3∑k=1n(k2+k)=3(∑k=1nk2+∑k=1nk)となる。∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1)∑k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1)したがって、求める和は3(n(n+1)(2n+1)6+n(n+1)2)=3(n(n+1)(2n+1)+3n(n+1)6)=n(n+1)2(2n+1+3)=n(n+1)2(2n+4)=n(n+1)(n+2)3(\frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2}) = 3(\frac{n(n+1)(2n+1) + 3n(n+1)}{6}) = \frac{n(n+1)}{2} (2n+1+3) = \frac{n(n+1)}{2} (2n+4) = n(n+1)(n+2)3(6n(n+1)(2n+1)+2n(n+1))=3(6n(n+1)(2n+1)+3n(n+1))=2n(n+1)(2n+1+3)=2n(n+1)(2n+4)=n(n+1)(n+2)3. 最終的な答えn(n+1)(n+2)n(n+1)(n+2)n(n+1)(n+2)