$\log_{10} 2 = a$, $\log_{10} 3 = b$のとき、以下の値を$a, b$を用いて表す。 (1) $\log_{10} \frac{9}{16}$ (2) $\log_{2} 27$代数学対数対数計算log指数2025/6/211. 問題の内容log102=a\log_{10} 2 = alog102=a, log103=b\log_{10} 3 = blog103=bのとき、以下の値をa,ba, ba,bを用いて表す。(1) log10916\log_{10} \frac{9}{16}log10169(2) log227\log_{2} 27log2272. 解き方の手順(1)log10916=log109−log1016\log_{10} \frac{9}{16} = \log_{10} 9 - \log_{10} 16log10169=log109−log1016=log1032−log1024= \log_{10} 3^2 - \log_{10} 2^4=log1032−log1024=2log103−4log102= 2 \log_{10} 3 - 4 \log_{10} 2=2log103−4log102=2b−4a= 2b - 4a=2b−4a(2)log227=log1027log102=log1033log102=3log103log102=3ba\log_{2} 27 = \frac{\log_{10} 27}{\log_{10} 2} = \frac{\log_{10} 3^3}{\log_{10} 2} = \frac{3 \log_{10} 3}{\log_{10} 2} = \frac{3b}{a}log227=log102log1027=log102log1033=log1023log103=a3b3. 最終的な答え(1) 2b−4a2b - 4a2b−4a(2) 3ba\frac{3b}{a}a3b