$\sum_{k=1}^{n} (k+1)(k+3)$を計算せよ。代数学数列シグマ和の計算2025/6/211. 問題の内容∑k=1n(k+1)(k+3)\sum_{k=1}^{n} (k+1)(k+3)∑k=1n(k+1)(k+3)を計算せよ。2. 解き方の手順まず、(k+1)(k+3)(k+1)(k+3)(k+1)(k+3)を展開します。(k+1)(k+3)=k2+4k+3(k+1)(k+3) = k^2 + 4k + 3(k+1)(k+3)=k2+4k+3したがって、与えられた和は次のようになります。∑k=1n(k2+4k+3)\sum_{k=1}^{n} (k^2 + 4k + 3)∑k=1n(k2+4k+3)この和を3つの和に分割します。∑k=1n(k2+4k+3)=∑k=1nk2+4∑k=1nk+∑k=1n3\sum_{k=1}^{n} (k^2 + 4k + 3) = \sum_{k=1}^{n} k^2 + 4\sum_{k=1}^{n} k + \sum_{k=1}^{n} 3∑k=1n(k2+4k+3)=∑k=1nk2+4∑k=1nk+∑k=1n3それぞれの和を計算します。∑k=1nk2=16n(n+1)(2n+1)\sum_{k=1}^{n} k^2 = \frac{1}{6}n(n+1)(2n+1)∑k=1nk2=61n(n+1)(2n+1)∑k=1nk=12n(n+1)\sum_{k=1}^{n} k = \frac{1}{2}n(n+1)∑k=1nk=21n(n+1)∑k=1n3=3n\sum_{k=1}^{n} 3 = 3n∑k=1n3=3nこれらの結果を元の式に代入します。∑k=1n(k2+4k+3)=16n(n+1)(2n+1)+4⋅12n(n+1)+3n\sum_{k=1}^{n} (k^2 + 4k + 3) = \frac{1}{6}n(n+1)(2n+1) + 4 \cdot \frac{1}{2}n(n+1) + 3n∑k=1n(k2+4k+3)=61n(n+1)(2n+1)+4⋅21n(n+1)+3n=16n(n+1)(2n+1)+2n(n+1)+3n= \frac{1}{6}n(n+1)(2n+1) + 2n(n+1) + 3n=61n(n+1)(2n+1)+2n(n+1)+3n=16n[(n+1)(2n+1)+12(n+1)+18]= \frac{1}{6}n[(n+1)(2n+1) + 12(n+1) + 18]=61n[(n+1)(2n+1)+12(n+1)+18]=16n[2n2+3n+1+12n+12+18]= \frac{1}{6}n[2n^2 + 3n + 1 + 12n + 12 + 18]=61n[2n2+3n+1+12n+12+18]=16n[2n2+15n+31]= \frac{1}{6}n[2n^2 + 15n + 31]=61n[2n2+15n+31]3. 最終的な答え16n(2n2+15n+31)\frac{1}{6}n(2n^2+15n+31)61n(2n2+15n+31)