9個の文字 a, a, b, b, c, c, c, c, c をすべて使って作れる文字列は何通りあるか。

離散数学順列組み合わせ重複順列
2025/3/29

1. 問題の内容

9個の文字 a, a, b, b, c, c, c, c, c をすべて使って作れる文字列は何通りあるか。

2. 解き方の手順

9個の文字を並べる総数は 9! 通りですが、同じ文字が複数あるので、それぞれの文字の順列で割る必要があります。
a が2個、b が2個、c が5個あります。
したがって、求める文字列の総数は、
9!2!2!5!\frac{9!}{2!2!5!}
で計算できます。
9!=9×8×7×6×5×4×3×2×1=3628809! = 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 362880
2!=2×1=22! = 2 \times 1 = 2
5!=5×4×3×2×1=1205! = 5 \times 4 \times 3 \times 2 \times 1 = 120
9!2!2!5!=3628802×2×120=362880480=756\frac{9!}{2!2!5!} = \frac{362880}{2 \times 2 \times 120} = \frac{362880}{480} = 756

3. 最終的な答え

756 通り

「離散数学」の関連問題

全体集合 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ の部分集合 $A = \{4, 7, 9\}$ と $B = \{1, 3, 4, 7, 8\}$ が与えられたとき、...

集合集合演算補集合和集合
2025/6/5

全体集合 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ の部分集合 $A = \{4, 7, 9\}$ と $B = \{1, 3, 4, 7, 8\}$ が与えられています...

集合集合演算補集合共通部分
2025/6/5

全体集合 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ と、その部分集合 $A = \{4, 7, 9\}$ および $B = \{1, 3, 4, 7, 8\}$ が与えら...

集合集合演算和集合共通部分補集合差集合
2025/6/5

4種類の文字a, b, c, d から重複を許して7個取る組み合わせの総数を求める問題です。

組み合わせ重複組み合わせ
2025/6/5

正の整数 $n$ に対して、A, B, C の 3 種類の文字から重複を許して $n$ 個の文字を 1 列に並べるとき、A と B が隣り合わない並べ方の総数を $f_n$ とする。 (1) A と ...

数列漸化式組み合わせ
2025/6/5

集合 $A = \{1, 2, 3, 4, 5\}$ の部分集合の個数を求める問題です。

集合部分集合組み合わせ
2025/6/4

A, B, C, D, E, F, Gの7人が1列に並ぶときの並び方について、以下の4つの条件を満たす場合の数を求める。 (ア) AとBが隣り合う。 (イ) AとGが両端にくる。 (ウ) A, B, ...

順列組み合わせ場合の数条件付き順列
2025/6/4

7つの文字a, a, a, b, b, b, cを1列に並べる並べ方の総数を求めます。

順列組み合わせ重複順列
2025/6/4

集合 $\{a, b\}$ の部分集合をすべて挙げてください。

集合部分集合
2025/6/4

全体集合 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$、集合 $A = \{1, 2, 4, 6, 8\}$、集合 $B = \{2, 3, 5, 9, 10\}$ ...

集合補集合和集合共通部分
2025/6/4