問題は、$(a + 2b - 3)^2$ を展開することです。

代数学展開多項式数式展開代数
2025/6/23

1. 問題の内容

問題は、(a+2b3)2(a + 2b - 3)^2 を展開することです。

2. 解き方の手順

この式を展開するには、(x+y+z)2=x2+y2+z2+2xy+2yz+2zx(x + y + z)^2 = x^2 + y^2 + z^2 + 2xy + 2yz + 2zx の公式を利用します。
ここで、x=ax = a, y=2by = 2b, z=3z = -3 とします。
(a+2b3)2=a2+(2b)2+(3)2+2a(2b)+2(2b)(3)+2(3)a(a + 2b - 3)^2 = a^2 + (2b)^2 + (-3)^2 + 2 \cdot a \cdot (2b) + 2 \cdot (2b) \cdot (-3) + 2 \cdot (-3) \cdot a
これを整理すると、
a2+4b2+9+4ab12b6aa^2 + 4b^2 + 9 + 4ab - 12b - 6a
となります。

3. 最終的な答え

a2+4b2+4ab6a12b+9a^2 + 4b^2 + 4ab - 6a - 12b + 9

「代数学」の関連問題

$\sqrt{18} = \sqrt{9 \times 2} = 3\sqrt{2}$ $\sqrt{50} = \sqrt{25 \times 2} = 5\sqrt{2}$

根号計算有理化展開
2025/6/23

与えられた4つの式を因数分解する問題です。 (1) $3x^2 - 10xy - 8y^2$ (2) $abx^2 - (a^2 + b^2)x + ab$ (3) $x^4 - 13x^2 + 36...

因数分解二次式
2025/6/23

(1) 第5項が48, 第7項が192である等比数列$\{a_n\}$の一般項を求める問題。 (2) 和 $5+8+11+\cdots+(3n+2)$ をシグマ記号を用いて表す問題。

数列等比数列等差数列一般項シグマ
2025/6/23

数列 $\{a_n\}$ の初項から第 $n$ 項までの和 $S_n$ が $a_n = 2S_n + 2n - 3$ ($n = 1, 2, 3, ...$) を満たしている。 (1) $a_1$ ...

数列漸化式等比数列
2025/6/23

画像に写っている数学の問題のうち、因数分解の問題をいくつか解きます。具体的には、以下の問題を解きます。 (1) $3x^2 - 10xy - 8y^2$ (2) $(x+2y)^2 - 5(x+2y)...

因数分解多項式
2025/6/23

問題は、$x^3 + y^3$ を因数分解することです。

因数分解立方和多項式
2025/6/23

二次関数 $y = -2x^2 - 4x + 1$ の $-2 \le x < 1$ の範囲における最大値と最小値を求める。

二次関数最大値最小値平方完成定義域
2025/6/23

$x = \sqrt{5} + \sqrt{2}$、 $y = \sqrt{5} - \sqrt{2}$ のとき、以下の値を求めます。 (1) $xy$ (2) $x^2 - y^2$ (3) $x^...

式の計算因数分解平方根展開
2025/6/23

与えられた2次関数 $y = -x^2 + 2x - 3$ について、x軸との共有点の有無を2つの方法で調べ、空欄ア~エに適切な数や言葉を記入する。

二次関数二次方程式判別式平方完成グラフ
2025/6/23

$\sum_{k=1}^{n-1} 2k$ を計算せよ。

シグマ数列等差数列公式
2025/6/23