$x^2 = -7$ を満たす $x$ の値を求めなさい。ただし、答えは「$\pm$ の形」で答えること。

代数学二次方程式虚数平方根
2025/6/23

1. 問題の内容

x2=7x^2 = -7 を満たす xx の値を求めなさい。ただし、答えは「±\pm の形」で答えること。

2. 解き方の手順

与えられた方程式は x2=7x^2 = -7 です。
この方程式を解くために、両辺の平方根を取ります。
x=±7x = \pm \sqrt{-7}
ここで、1=i\sqrt{-1} = i (虚数単位) であることを利用します。
7=7(1)=71=7i\sqrt{-7} = \sqrt{7 \cdot (-1)} = \sqrt{7} \cdot \sqrt{-1} = \sqrt{7}i
したがって、x=±7ix = \pm \sqrt{7}i となります。

3. 最終的な答え

±7i\pm \sqrt{7}i

「代数学」の関連問題

問題14:不等式 $x+a \ge 3x+5$ の解が $x \le 3$ であるとき、定数 $a$ の値を求めよ。 問題15:和が40である異なる2つの数がある。大きい数を $\frac{1}{4}...

不等式一次不等式連立不等式解の範囲定数
2025/6/23

$a$ を正の定数とし、$f(x) = x^2 + 2(a-3)x - a^2 + 3a + 5$ とする。2次関数 $y=f(x)$ のグラフの頂点の $x$ 座標を $p$ とする。 (ア) $p...

二次関数平方完成最大・最小グラフ
2025/6/23

はい、承知いたしました。画像から読み取れる範囲で、いくつか問題を選んで解いてみます。

二次関数最大値最小値平方完成定義域
2025/6/23

与えられた2次関数 $y = -2x^2 - 4x + 1$ の $-2 \le x < 1$ の範囲における最大値と最小値を求める問題です。

二次関数最大値最小値平方完成定義域
2025/6/23

不等式 $x + a \ge 3x + 5$ の解が $x \le 3$ であるとき、定数 $a$ の値を求めよ。

不等式一次不等式解の範囲定数
2025/6/23

与えられた2次関数の定義域における最大値と最小値を求める問題です。今回は問題(4) $y = x^2 - 2x + 2$ ($-1 < x < 2$) を解きます。

二次関数最大値最小値平方完成定義域
2025/6/23

$n$ が自然数のとき、${}_n C_0 + {}_n C_1 + \dots + {}_n C_n$ を $n$ の簡単な式で表す問題です。

二項定理組み合わせ二項係数
2025/6/23

$n$ が自然数のとき、${}_nC_0 + {}_nC_1 + \dots + {}_nC_n$ を $n$ の簡単な式で表す問題です。

二項定理組み合わせ二項係数
2025/6/23

$n$が自然数のとき、${}_nC_0 + {}_nC_1 + \dots + {}_nC_n$ を$n$の簡単な式で表す問題です。

二項定理組み合わせ数学的証明
2025/6/23

$(a + \frac{b}{2} + 3c)^8$ の展開式における $a^3b^3c^2$ の項の係数を求める問題です。

多項定理二項展開係数
2025/6/23