問題2の(1)と(2)について、$a$と$b$の値をそれぞれ求める。幾何学三角比正弦定理余弦定理三角形2025/6/231. 問題の内容問題2の(1)と(2)について、aaaとbbbの値をそれぞれ求める。2. 解き方の手順(1)∠C=180∘−45∘−30∘=105∘\angle C = 180^\circ - 45^\circ - 30^\circ = 105^\circ∠C=180∘−45∘−30∘=105∘正弦定理より、asin45∘=1sin30∘\frac{a}{\sin{45^\circ}} = \frac{1}{\sin{30^\circ}}sin45∘a=sin30∘1a=sin45∘sin30∘=2212=2a = \frac{\sin{45^\circ}}{\sin{30^\circ}} = \frac{\frac{\sqrt{2}}{2}}{\frac{1}{2}} = \sqrt{2}a=sin30∘sin45∘=2122=2bsin105∘=1sin30∘\frac{b}{\sin{105^\circ}} = \frac{1}{\sin{30^\circ}}sin105∘b=sin30∘1sin105∘=sin(60∘+45∘)=sin60∘cos45∘+cos60∘sin45∘=3222+1222=6+24\sin{105^\circ} = \sin{(60^\circ+45^\circ)} = \sin{60^\circ}\cos{45^\circ} + \cos{60^\circ}\sin{45^\circ} = \frac{\sqrt{3}}{2}\frac{\sqrt{2}}{2} + \frac{1}{2}\frac{\sqrt{2}}{2} = \frac{\sqrt{6}+\sqrt{2}}{4}sin105∘=sin(60∘+45∘)=sin60∘cos45∘+cos60∘sin45∘=2322+2122=46+2b=sin105∘sin30∘=6+2412=6+22b = \frac{\sin{105^\circ}}{\sin{30^\circ}} = \frac{\frac{\sqrt{6}+\sqrt{2}}{4}}{\frac{1}{2}} = \frac{\sqrt{6}+\sqrt{2}}{2}b=sin30∘sin105∘=2146+2=26+2(2)余弦定理よりa2=b2+22−2⋅b⋅2cos60∘a^2 = b^2 + 2^2 - 2\cdot b\cdot 2 \cos{60^\circ}a2=b2+22−2⋅b⋅2cos60∘a2=b2+4−4b⋅12a^2 = b^2 + 4 - 4b\cdot \frac{1}{2}a2=b2+4−4b⋅21a2=b2−2b+4a^2 = b^2 - 2b + 4a2=b2−2b+4正弦定理より2sin60∘=bsin45∘\frac{2}{\sin{60^\circ}} = \frac{b}{\sin{45^\circ}}sin60∘2=sin45∘bb=2sin45∘sin60∘=2⋅2232=223=263b = \frac{2\sin{45^\circ}}{\sin{60^\circ}} = \frac{2\cdot\frac{\sqrt{2}}{2}}{\frac{\sqrt{3}}{2}} = \frac{2\sqrt{2}}{\sqrt{3}} = \frac{2\sqrt{6}}{3}b=sin60∘2sin45∘=232⋅22=322=326また、∠C=180∘−45∘−60∘=75∘\angle C = 180^\circ - 45^\circ - 60^\circ = 75^\circ∠C=180∘−45∘−60∘=75∘a=2sin45∘sin75∘sin60∘sin45∘a = \frac{2 \sin{45^\circ} \sin{75^\circ}}{\sin{60^\circ} \sin{45^\circ}} a=sin60∘sin45∘2sin45∘sin75∘asin60∘=2sin60∘\frac{a}{\sin{60^\circ}} = \frac{2}{\sin{60^\circ}}sin60∘a=sin60∘2より、a=2a=2a=2a2=b2−2b+4a^2 = b^2 - 2b + 4a2=b2−2b+4に代入4=b2−2b+44 = b^2 - 2b + 44=b2−2b+4b2−2b=0b^2 - 2b = 0b2−2b=0b(b−2)=0b(b-2) = 0b(b−2)=0b=0b = 0b=0またはb=2b=2b=2b=0b=0b=0は不適b=2b=2b=23. 最終的な答え(1) a=2a=\sqrt{2}a=2, b=6+22b=\frac{\sqrt{6}+\sqrt{2}}{2}b=26+2(2) a=2a=2a=2, b=263b = \frac{2\sqrt{6}}{3}b=326あるいは(2) a=2a=2a=2, b=2b=2b=2