与えられた2次関数 $y = -x^2 + 7$ のグラフに関する情報を読み取り、穴埋め問題を解く。具体的には、頂点の座標、グラフの向き(上に凸か下に凸か)、最大値または最小値、およびそれが起こる $x$ の値を特定する。

代数学二次関数グラフ頂点最大値上に凸
2025/6/24

1. 問題の内容

与えられた2次関数 y=x2+7y = -x^2 + 7 のグラフに関する情報を読み取り、穴埋め問題を解く。具体的には、頂点の座標、グラフの向き(上に凸か下に凸か)、最大値または最小値、およびそれが起こる xx の値を特定する。

2. 解き方の手順

与えられた2次関数 y=x2+7y = -x^2 + 7 を標準形に変形する。標準形は y=a(xp)2+qy = a(x-p)^2 + q で、頂点は (p,q)(p, q) となる。
y=x2+7y = -x^2 + 7y=(x0)2+7y = -(x-0)^2 + 7 と変形できる。したがって、頂点は (0,7)(0, 7) である。
x2x^2 の係数が負であるため、グラフは上に凸である。
上に凸であるため、最大値が存在する。頂点の yy 座標が最大値となる。したがって、最大値は7であり、それは x=0x = 0 で起こる。最小値は存在しない。

3. 最終的な答え

頂点 (0, 7)、上に凸
x=0x = 0 で最大値 7
最小値はない。

「代数学」の関連問題

与えられた等式を指定された文字について解く問題です。 (1) $3x + 2y = 8$ を $y$ について解く。 (2) $b = \frac{a-1}{2}$ を $a$ について解く。 (3)...

方程式式の変形移項文字について解く
2025/6/24

* 売り値を基準の250円から $x$ 円変更するとします。 つまり、1個あたりの売り値は $250 + x$ 円です。 * 売上個数は、$600 - 15x$ 個となります。($x$...

二次関数最大値利益方程式最適化
2025/6/24

与えられた式 $5x^2 - 80$ を因数分解してください。

因数分解二次式
2025/6/24

2つの奇数の差が偶数になることを、文字を使って説明する問題です。

整数の性質偶数奇数証明
2025/6/24

2次方程式 $2x^2 - 4x + 3 = 0$ を解く問題です。

二次方程式解の公式複素数
2025/6/24

カレンダーから図のような十字の形に5つの数を選び出すとき、それらの数の和が常に5の倍数になることを、文字を使って説明せよ。

文字式整数の性質証明代数
2025/6/24

次の方程式を解いて、$x$ の値を求めます。 $\frac{7x-3}{4} = \frac{2}{3}x$

一次方程式分数方程式方程式の解法
2025/6/24

以下の5つの式を因数分解します。 (1) $6xy - 8x - 3y + 4$ (2) $8x^2 + 6xy - 9y^2$ (3) $(x^2 + x)^2 - 8(x^2 + x) + 12$...

因数分解多項式数式処理
2025/6/24

(1) は、2つの多項式の足し算の問題です。 $(-5x + 3y + 4)$ と $(2x + 3y - 5)$ を足し合わせます。 (2) は、比の計算の問題です。 $x:4.5 = 3.7:8....

多項式足し算比例式
2025/6/24

$\sum_{k=1}^{n} (5k + 4)$ を計算してください。

シグマ数列和の公式計算
2025/6/24