2次方程式 $3x^2 - 5x + 1 = 0$ の実数解の個数を求めます。

代数学二次方程式判別式解の個数
2025/6/24

1. 問題の内容

2次方程式 3x25x+1=03x^2 - 5x + 1 = 0 の実数解の個数を求めます。

2. 解き方の手順

2次方程式 ax2+bx+c=0ax^2 + bx + c = 0 の実数解の個数は、判別式 D=b24acD = b^2 - 4ac によって決定されます。
* D>0D > 0 のとき、実数解は2個
* D=0D = 0 のとき、実数解は1個
* D<0D < 0 のとき、実数解は0個
与えられた2次方程式 3x25x+1=03x^2 - 5x + 1 = 0 において、a=3,b=5,c=1a = 3, b = -5, c = 1 です。
判別式 DD を計算します。
D=b24ac=(5)24(3)(1)D = b^2 - 4ac = (-5)^2 - 4(3)(1)
D=2512D = 25 - 12
D=13D = 13
D=13>0D = 13 > 0 であるため、実数解は2個です。

3. 最終的な答え

2個

「代数学」の関連問題

$(3x - \frac{1}{4x})^6$ の展開式における $x^2$ の項の係数を求める問題です。

二項定理展開係数
2025/6/25

$\frac{a}{b} = \frac{c}{d}$ のとき、$\frac{a+c}{b+d} = \frac{ad+bc}{2bd}$ を証明する。

比例式分数式等式の証明
2025/6/25

数列 $\{a_n\}$: $1, 2, 5, 14, 41, \dots$ の一般項を階差数列を用いて求めます。

数列階差数列等比数列シグマ一般項
2025/6/25

放物線 $y = -x^2 + 2x + 6$ を、$x$ 軸方向に $a$、$y$ 軸方向に $a^2$ だけ平行移動した曲線が原点を通るとき、定数 $a$ の値を求める問題です。

放物線平行移動二次関数方程式
2025/6/25

与えられた2つの行列の階数を求めます。 (i) $ \begin{pmatrix} 2 & -3 & 1 & 5 \\ 4 & 3 & -5 & 3 \\ 3 & -1 & -2 & 4 \end{p...

行列階数行基本変形線形代数
2025/6/25

二次方程式 $-3x^2 + 2x + 6 = 0$ の2つの解を $\alpha$、$\beta$ とするとき、$\alpha + \beta$ および $\alpha \beta$ の値を求める問...

二次方程式解と係数の関係根の和根の積
2025/6/25

2次方程式 $2x^2 - 6x + 1 = 0$ の2つの解を $\alpha, \beta$ とするとき、$\frac{1}{\alpha} + \frac{1}{\beta}$ の値を求めよ。

二次方程式解と係数の関係式の計算
2025/6/25

2次方程式 $3x^2 - 6x + 2 = 0$ の2つの解を $\alpha$、$\beta$ とするとき、$\alpha^3 + \beta^3$ の値を求めよ。

二次方程式解と係数の関係解の公式式の展開
2025/6/25

2次方程式 $2x^2 - 4x + 3 = 0$ の2つの解を $\alpha$, $\beta$ とするとき、$\alpha^3 + \beta^3$ の値を求めよ。

二次方程式解と係数の関係式の計算
2025/6/25

与えられた行列の逆行列を求めたり、行列式を計算したり、行列の計算をしたり、連立方程式をクラメルの公式を用いて解く問題です。具体的には、 * 問1: 2x2 行列の逆行列を求める (2問) * ...

行列逆行列行列式行列の積連立一次方程式クラメルの公式
2025/6/25