この問題は、数字の並べ方に関する組み合わせの問題です。 (1) 5つの数字から重複を許して4つ並べる場合の数 (2) 5つの数字から重複を許さず4つ並べる場合の数 (3) 5つの数字の中から1回使う数字と3回使う数字を選び、並べる場合の数を求める問題です。

離散数学組み合わせ順列重複組合せ場合の数
2025/6/24

1. 問題の内容

この問題は、数字の並べ方に関する組み合わせの問題です。
(1) 5つの数字から重複を許して4つ並べる場合の数
(2) 5つの数字から重複を許さず4つ並べる場合の数
(3) 5つの数字の中から1回使う数字と3回使う数字を選び、並べる場合の数を求める問題です。

2. 解き方の手順

(1) 重複を許して4つ並べる場合の数は、545^4で計算できます。
54=5×5×5×5=6255^4 = 5 \times 5 \times 5 \times 5 = 625
(2) 重複を許さず4つ並べる場合の数は、順列 5P4_5P_4 で計算できます。
5P4=5×4×3×2=120_5P_4 = 5 \times 4 \times 3 \times 2 = 120
(3)
まず、1回使う数字と3回使う数字を選ぶ場合の数は、5つの数字から2つを選ぶ順列なので、5P2=5×4=20_5P_2=5 \times 4 = 20 通りです。
次に、選んだ2つの数字のうち、1回使う数字を4つの場所のうちどこに置くかを考えます。これは4箇所から1箇所を選ぶ組み合わせなので、4C1=4!1!(41)!=4!1!3!=4×3×2×11×3×2×1=4_4C_1 = \frac{4!}{1!(4-1)!} = \frac{4!}{1!3!} = \frac{4 \times 3 \times 2 \times 1}{1 \times 3 \times 2 \times 1} = 4 通りです。
したがって、異なる2つの数字を1回と3回使ってできるものは、20通り × 4通りで計算できます。
20×4=8020 \times 4 = 80

3. 最終的な答え

(1) 625
(2) 120
(3) 80

「離散数学」の関連問題

東西に5本、南北に6本の格子状の道がある。AからBへ最短距離で行く道順について、以下の問いに答える。 (1) どのような道順でもよい場合、何通りの道順があるか。 (2) Cを通る場合、何通りの道順があ...

組み合わせ最短経路格子状の道
2025/6/24

与えられた命題 $\neg \neg \neg (\forall x \in \mathbb{N} \ \neg (\exists y \in \mathbb{N} \ (x+y>10)))$ と同値...

論理命題論理全称量化子存在量化子
2025/6/24

問題は、与えられた命題 $\neg(\forall x \exists y (\neg P(x,y)))$ と同値な命題を選ぶ問題です。選択肢は以下の通りです。 1. $\exists x \for...

論理命題論理全称 quantifiers存在 quantifiers論理的同値
2025/6/24

与えられた論理式 $\forall x \forall y \exists z P(x, y, z)$ と同値な命題を選択する問題です。選択肢は以下の4つです。 1. $\forall x \exi...

論理量化子論理式同値
2025/6/24

問題9(1): 6人をA, B, Cの3つの組に2人ずつ分ける方法は何通りあるか。 問題9(2): 6人を2人ずつの3つの組に分ける方法は何通りあるか。

組み合わせ場合の数順列
2025/6/24

与えられた4つの命題の真偽を判定する問題です。 (1) $\forall x (x=x)$ (2) $\exists x (x=1)$ (3) $\forall x (x \in N \rightar...

命題論理全称 quantifiers存在 quantifiers集合
2025/6/24

8人が円形のテーブルに向かって座る座り方の総数を求める問題です。

組み合わせ順列円順列階乗
2025/6/24

問題は以下の2つです。 (1) 命題 $p$ と $q$ に対して、真理値表を完成させる問題です。具体的には、$\neg p$、$\neg p \lor q$、$p \rightarrow q$ の真...

論理真理値表命題論理トートロジード・モルガンの法則論理演算
2025/6/24

アッカーマン関数 $A(m, n)$ について、$A(2, 1) = 5$ であることを、$A(2, 0) = 3$ と $A(1, 1) = 3$ であることを利用して、途中式を書いて示す。

アッカーマン関数再帰関数計算量
2025/6/24

与えられた真理値表を完成させる問題です。$p$ と $q$ の真偽値が与えられたとき、$p \land q \rightarrow p$, $p \rightarrow p \land q$, $\l...

論理真理値表命題論理
2025/6/24