39人の野球選手の中から、1番、2番、3番の打順を決める場合の数を求める問題です。

確率論・統計学順列組み合わせ場合の数
2025/6/24

1. 問題の内容

39人の野球選手の中から、1番、2番、3番の打順を決める場合の数を求める問題です。

2. 解き方の手順

これは順列の問題です。
39人の中から3人を選んで順番に並べる場合の数を求めます。
1番の打者は39人の中から選ぶことができるので、39通りの選び方があります。
1番の打者を決めた後、2番の打者は残りの38人の中から選ぶことができるので、38通りの選び方があります。
1番と2番の打者を決めた後、3番の打者は残りの37人の中から選ぶことができるので、37通りの選び方があります。
したがって、1番、2番、3番の打順を決める場合の数は、
39×38×3739 \times 38 \times 37 で計算できます。
39×38×37=5483439 \times 38 \times 37 = 54834

3. 最終的な答え

54834通り

「確率論・統計学」の関連問題

大きさが互いに異なる3つのサイコロを同時に投げます。 (1) 3つのサイコロの出た目の積が2の倍数となる場合の数を求めます。 (2) 3つのサイコロの出た目の積が3の倍数となる場合の数を求めます。 (...

確率組み合わせ場合の数サイコロ
2025/6/24

1個のサイコロを4回投げるとき、以下の確率を求めます。 (1) 3の目がちょうど2回出る確率 (2) 2以下の目がちょうど3回出る確率

確率サイコロ二項分布
2025/6/24

5本のくじの中に当たりくじが2本ある。A、Bの2人が順に1本ずつくじを引き、Aが引いたくじを元に戻してからBが引くとき、次の確率を求める問題。 (1) 2人とも当たる確率 (2) Aが当たり、Bがはず...

確率独立事象くじ引き確率計算
2025/6/24

8本のくじの中に当たりくじが3本ある。このくじを同時に2本引くとき、少なくとも1本は当たる確率を求める。

確率組み合わせ余事象
2025/6/24

与えられた賛否の表の空欄を埋め、以下の人数を求める問題です。 (1) Aにだけ賛成した人 (2) Bにだけ賛成した人

集合統計表計算条件付き確率
2025/6/24

(1) 当たる確率が $\frac{1}{5}$ であるくじがある。このくじのはずれる確率を求めよ。 (2) 大小2個のサイコロを同時に投げるとき、少なくとも一方の目が奇数になる確率を求めよ。

確率余事象サイコロくじ
2025/6/24

白玉3個、黒玉2個、赤玉1個の計6個の玉がある。 (1) 6個すべての玉を円形に並べる方法は何通りあるか。 (2) 6個すべての玉にひもを通し、輪を作る方法は何通りあるか。

順列円順列組み合わせ場合の数数え上げ
2025/6/24

白玉3個、黒玉2個、赤玉1個の合計6個の玉がある。 (1) 6個すべての玉を円形に並べる方法は何通りあるか。 (2) 6個すべての玉にひもを通して輪を作る方法は何通りあるか。

順列円順列重複順列組み合わせ
2025/6/24

男子3人と女子4人がいるとき、全員を1列に並べる並べ方の総数を求める。

順列組み合わせ場合の数
2025/6/24

9人の生徒を以下の人数の組に分ける方法の数をそれぞれ求めます。 (1) 4人, 3人, 2人の3組 (2) 3人, 3人, 3人の3組 (3) 5人, 2人, 2人の3組

組み合わせ順列場合の数
2025/6/24