$x=1$ のとき最小値 $-2$ をとり、$f(-1) = 2$ であるような2次関数 $y=f(x)$ を求める。

代数学二次関数最小値二次関数の決定
2025/6/24

1. 問題の内容

x=1x=1 のとき最小値 2-2 をとり、f(1)=2f(-1) = 2 であるような2次関数 y=f(x)y=f(x) を求める。

2. 解き方の手順

2次関数 f(x)f(x) は、x=1x=1 で最小値 2-2 をとるので、
f(x)=a(x1)22f(x) = a(x-1)^2 - 2 と表せる (a>0a > 0)。
f(1)=2f(-1) = 2 という条件から、aa の値を求める。
f(1)=a(11)22=a(2)22=4a2=2f(-1) = a(-1-1)^2 - 2 = a(-2)^2 - 2 = 4a - 2 = 2
よって、 4a=44a = 4 より、a=1a=1
したがって、f(x)=(x1)22=x22x+12=x22x1f(x) = (x-1)^2 - 2 = x^2 - 2x + 1 - 2 = x^2 - 2x - 1

3. 最終的な答え

f(x)=x22x1f(x) = x^2 - 2x - 1

「代数学」の関連問題

多項式 $P(x) = x^3 + ax + b$ を $(x-1)(x-2)$ で割ったときの余りが $3x+2$ であるとき、定数 $a, b$ の値を求める。

多項式剰余の定理方程式連立方程式
2025/6/24

3点 A(-1, 6), B(1, a), C(a, 0) が一直線上にあるとき、$a$ の値を求める問題です。

直線傾き座標連立方程式
2025/6/24

関数 $y = (x^2 - 2x)^2 + 4(x^2 - 2x) - 1$ の最大値、最小値を求める。

二次関数最大値最小値平方完成判別式
2025/6/24

与えられた2つの2次関数の、指定された定義域における最大値と最小値を求め、そのときの $x$ の値を求める問題です。 (1) $y = x^2 - 2x + 3$ ($-1 \le x < 2$) (...

二次関数最大値最小値定義域平方完成
2025/6/24

関数 $y = -2x^2 + 4x + c$ の $-2 \le x \le 2$ における最小値が $-9$ であるとき、定数 $c$ の値を求め、さらにこの関数の最大値とそのときの $x$ の値...

二次関数最大値最小値平方完成
2025/6/24

与えられた2次関数の最大値と最小値を、指定された範囲内で求める問題です。 (1) $y = x^2 + 4x + 1$ ($-1 \le x \le 1$) (2) $y = -2x^2 + 12x ...

二次関数最大値最小値平方完成
2025/6/24

与えられた漸化式から数列 $\{a_n\}$ の一般項を求めます。 (1) $a_1=1, a_{n+1} - a_n = 2n$ (2) $a_1=2, a_{n+1} - a_n = 3n^2 +...

数列漸化式一般項
2025/6/24

与えられた漸化式から数列 $\{a_n\}$ の一般項を求める問題です。具体的には、以下の4つの数列の一般項を求めます。 (1) $a_1 = 1, a_{n+1} - a_n = 5$ (2) $a...

数列漸化式等差数列等比数列一般項
2025/6/24

与えられた二次関数の最大値と最小値を、指定された範囲内で求め、そのときの $x$ の値を求める。 (1) $y = 2x^2 - 4x + 1$ ($0 \le x \le 4$) (2) $y = ...

二次関数最大値最小値平方完成グラフ
2025/6/24

問題4の(1), (2), (3)と問題5の数列 $\{a_n\}$ の一般項を求めます。 問題4 (1) $a_1 = 1, a_{n+1} = 2a_n + 3$ (2) $a_1 = 0, a_...

数列漸化式等比数列等差数列
2025/6/24