和 $S = \sum_{k=1}^{n} 2^{k-1}(2k-1)$ を $n$ の式で表す。代数学級数シグマ等比数列数列の和2025/6/241. 問題の内容和 S=∑k=1n2k−1(2k−1)S = \sum_{k=1}^{n} 2^{k-1}(2k-1)S=∑k=1n2k−1(2k−1) を nnn の式で表す。2. 解き方の手順まず、SSS を展開します。S=∑k=1n2k−1(2k−1)=∑k=1n(2k⋅2k−1−2k−1)S = \sum_{k=1}^{n} 2^{k-1}(2k-1) = \sum_{k=1}^{n} (2k \cdot 2^{k-1} - 2^{k-1})S=∑k=1n2k−1(2k−1)=∑k=1n(2k⋅2k−1−2k−1)S=∑k=1n2k⋅2k−1−∑k=1n2k−1S = \sum_{k=1}^{n} 2k \cdot 2^{k-1} - \sum_{k=1}^{n} 2^{k-1}S=∑k=1n2k⋅2k−1−∑k=1n2k−1ここで、S1=∑k=1n2k⋅2k−1S_1 = \sum_{k=1}^{n} 2k \cdot 2^{k-1}S1=∑k=1n2k⋅2k−1 と S2=∑k=1n2k−1S_2 = \sum_{k=1}^{n} 2^{k-1}S2=∑k=1n2k−1 とおきます。S2S_2S2 は等比数列の和なので簡単に計算できます。S2=∑k=1n2k−1=1+2+22+⋯+2n−1=1(2n−1)2−1=2n−1S_2 = \sum_{k=1}^{n} 2^{k-1} = 1 + 2 + 2^2 + \dots + 2^{n-1} = \frac{1(2^n - 1)}{2-1} = 2^n - 1S2=∑k=1n2k−1=1+2+22+⋯+2n−1=2−11(2n−1)=2n−1次に、S1S_1S1 を計算します。S1=∑k=1n2k⋅2k−1=2∑k=1nk⋅2k−1S_1 = \sum_{k=1}^{n} 2k \cdot 2^{k-1} = 2 \sum_{k=1}^{n} k \cdot 2^{k-1}S1=∑k=1n2k⋅2k−1=2∑k=1nk⋅2k−1ここで、T=∑k=1nk⋅2k−1T = \sum_{k=1}^{n} k \cdot 2^{k-1}T=∑k=1nk⋅2k−1 とおきます。T=1⋅20+2⋅21+3⋅22+⋯+n⋅2n−1T = 1 \cdot 2^0 + 2 \cdot 2^1 + 3 \cdot 2^2 + \dots + n \cdot 2^{n-1}T=1⋅20+2⋅21+3⋅22+⋯+n⋅2n−12T=1⋅21+2⋅22+3⋅23+⋯+(n−1)⋅2n−1+n⋅2n2T = 1 \cdot 2^1 + 2 \cdot 2^2 + 3 \cdot 2^3 + \dots + (n-1) \cdot 2^{n-1} + n \cdot 2^n2T=1⋅21+2⋅22+3⋅23+⋯+(n−1)⋅2n−1+n⋅2nT−2T=1⋅20+(2−1)21+(3−2)22+⋯+(n−(n−1))2n−1−n⋅2nT - 2T = 1 \cdot 2^0 + (2-1)2^1 + (3-2)2^2 + \dots + (n-(n-1))2^{n-1} - n \cdot 2^nT−2T=1⋅20+(2−1)21+(3−2)22+⋯+(n−(n−1))2n−1−n⋅2n−T=1+21+22+⋯+2n−1−n⋅2n-T = 1 + 2^1 + 2^2 + \dots + 2^{n-1} - n \cdot 2^n−T=1+21+22+⋯+2n−1−n⋅2n−T=1(2n−1)2−1−n⋅2n=2n−1−n⋅2n-T = \frac{1(2^n-1)}{2-1} - n \cdot 2^n = 2^n - 1 - n \cdot 2^n−T=2−11(2n−1)−n⋅2n=2n−1−n⋅2nT=n⋅2n−2n+1=(n−1)2n+1T = n \cdot 2^n - 2^n + 1 = (n-1)2^n + 1T=n⋅2n−2n+1=(n−1)2n+1したがって、S1=2T=2((n−1)2n+1)=(n−1)2n+1+2S_1 = 2T = 2( (n-1)2^n + 1 ) = (n-1)2^{n+1} + 2S1=2T=2((n−1)2n+1)=(n−1)2n+1+2よって、S=S1−S2=(n−1)2n+1+2−(2n−1)=(n−1)2n+1−2n+3=2n⋅2n−2⋅2n−2n+3=n⋅2n+1−3⋅2n+3=(n−3/2)2n+1+3S = S_1 - S_2 = (n-1)2^{n+1} + 2 - (2^n - 1) = (n-1)2^{n+1} - 2^n + 3 = 2n \cdot 2^n - 2 \cdot 2^n - 2^n + 3 = n \cdot 2^{n+1} - 3 \cdot 2^n + 3 = (n-3/2) 2^{n+1} + 3S=S1−S2=(n−1)2n+1+2−(2n−1)=(n−1)2n+1−2n+3=2n⋅2n−2⋅2n−2n+3=n⋅2n+1−3⋅2n+3=(n−3/2)2n+1+3.S=n⋅2n+1−3⋅2n+3S = n \cdot 2^{n+1} - 3 \cdot 2^n + 3S=n⋅2n+1−3⋅2n+33. 最終的な答えS=n⋅2n+1−3⋅2n+3S = n \cdot 2^{n+1} - 3 \cdot 2^n + 3S=n⋅2n+1−3⋅2n+3