与えられた連立一次方程式を解いて、$x$ と $y$ の値を求めます。 連立方程式は次の通りです。 $ \begin{cases} y = -2x + 11 \\ 7x - 9y = 1 \end{cases} $

代数学連立方程式代入法一次方程式
2025/6/24

1. 問題の内容

与えられた連立一次方程式を解いて、xxyy の値を求めます。
連立方程式は次の通りです。
\begin{cases}
y = -2x + 11 \\
7x - 9y = 1
\end{cases}

2. 解き方の手順

この連立方程式を解くために、代入法を使用します。
まず、一つ目の式 y=2x+11y = -2x + 11 を二つ目の式に代入します。
7x9(2x+11)=17x - 9(-2x + 11) = 1
これを展開して xx について解きます。
7x+18x99=17x + 18x - 99 = 1
25x=10025x = 100
x=10025x = \frac{100}{25}
x=4x = 4
次に、x=4x = 4 を一つ目の式に代入して、yy の値を求めます。
y=2(4)+11y = -2(4) + 11
y=8+11y = -8 + 11
y=3y = 3

3. 最終的な答え

したがって、連立方程式の解は x=4x = 4y=3y = 3 です。
(x,y)=(4,3)(x, y) = (4, 3)

「代数学」の関連問題

多項式 $P(x) = x^3 + ax + b$ を $(x-1)(x-2)$ で割ったときの余りが $3x+2$ であるとき、定数 $a, b$ の値を求める。

多項式剰余の定理方程式連立方程式
2025/6/24

3点 A(-1, 6), B(1, a), C(a, 0) が一直線上にあるとき、$a$ の値を求める問題です。

直線傾き座標連立方程式
2025/6/24

関数 $y = (x^2 - 2x)^2 + 4(x^2 - 2x) - 1$ の最大値、最小値を求める。

二次関数最大値最小値平方完成判別式
2025/6/24

与えられた2つの2次関数の、指定された定義域における最大値と最小値を求め、そのときの $x$ の値を求める問題です。 (1) $y = x^2 - 2x + 3$ ($-1 \le x < 2$) (...

二次関数最大値最小値定義域平方完成
2025/6/24

関数 $y = -2x^2 + 4x + c$ の $-2 \le x \le 2$ における最小値が $-9$ であるとき、定数 $c$ の値を求め、さらにこの関数の最大値とそのときの $x$ の値...

二次関数最大値最小値平方完成
2025/6/24

与えられた2次関数の最大値と最小値を、指定された範囲内で求める問題です。 (1) $y = x^2 + 4x + 1$ ($-1 \le x \le 1$) (2) $y = -2x^2 + 12x ...

二次関数最大値最小値平方完成
2025/6/24

与えられた漸化式から数列 $\{a_n\}$ の一般項を求めます。 (1) $a_1=1, a_{n+1} - a_n = 2n$ (2) $a_1=2, a_{n+1} - a_n = 3n^2 +...

数列漸化式一般項
2025/6/24

与えられた漸化式から数列 $\{a_n\}$ の一般項を求める問題です。具体的には、以下の4つの数列の一般項を求めます。 (1) $a_1 = 1, a_{n+1} - a_n = 5$ (2) $a...

数列漸化式等差数列等比数列一般項
2025/6/24

与えられた二次関数の最大値と最小値を、指定された範囲内で求め、そのときの $x$ の値を求める。 (1) $y = 2x^2 - 4x + 1$ ($0 \le x \le 4$) (2) $y = ...

二次関数最大値最小値平方完成グラフ
2025/6/24

問題4の(1), (2), (3)と問題5の数列 $\{a_n\}$ の一般項を求めます。 問題4 (1) $a_1 = 1, a_{n+1} = 2a_n + 3$ (2) $a_1 = 0, a_...

数列漸化式等比数列等差数列
2025/6/24