与えられた円錐の体積を求める問題です。円錐の高さは9cm、底面の半径は5cmです。

幾何学体積円錐半径高さπ
2025/3/30

1. 問題の内容

与えられた円錐の体積を求める問題です。円錐の高さは9cm、底面の半径は5cmです。

2. 解き方の手順

円錐の体積 VV は、底面積 AA と高さ hh を用いて、次の式で計算できます。
V=13AhV = \frac{1}{3} A h
円錐の底面は円なので、底面積 AA は半径 rr を用いて、次の式で計算できます。
A=πr2A = \pi r^2
与えられた円錐では、r=5r = 5 cm、h=9h = 9 cm です。
まず、底面積 AA を計算します。
A=π(5)2=25π cm2A = \pi (5)^2 = 25 \pi \text{ cm}^2
次に、円錐の体積 VV を計算します。
V=13(25π)(9)=13×225π=75π cm3V = \frac{1}{3} (25 \pi) (9) = \frac{1}{3} \times 225 \pi = 75 \pi \text{ cm}^3

3. 最終的な答え

円錐の体積は 75π cm375\pi \text{ cm}^3 です。

「幾何学」の関連問題

三角形ABCにおいて、$AB=7$, $BC=4$, $CA=5$である。角BACとその外角の二等分線が、辺BCまたはその延長と交わる点をそれぞれE,Fとする。CEとEFの長さを求める。

三角形角の二等分線の定理外角の二等分線辺の長さ
2025/8/5

三角形ABCにおいて、$AB=7$, $BC=4$, $CA=5$とする。角BACの二等分線が辺BCと交わる点をEとするとき、線分CEの長さを求める。

三角形角の二等分線角の二等分線の定理線分の長さ
2025/8/5

四面体ABCDにおいて、A, B, C, D の位置ベクトルがそれぞれ $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ である。三角形ACDの重心をGとし、線分BGを3:1に...

ベクトル四面体重心外分
2025/8/5

四面体ABCDにおいて、頂点をそれぞれA($\vec{a}$), B($\vec{b}$), C($\vec{c}$), D($\vec{d}$)とする。三角形ABDの重心をG($\vec{g}$)と...

ベクトル空間ベクトル重心内分点
2025/8/5

四面体ABCDにおいて、点A, B, C, Dの位置ベクトルをそれぞれ$\vec{a}, \vec{b}, \vec{c}, \vec{d}$とする。三角形ABDの重心をGとし、線分CGを2:5に内分...

ベクトル四面体重心内分点
2025/8/5

四面体ABCDにおいて、点A, B, C, Dの位置ベクトルをそれぞれ$\vec{a}, \vec{b}, \vec{c}, \vec{d}$とする。三角形ABCの重心をGとし、線分DGを1:4に内分...

ベクトル空間ベクトル重心内分点四面体
2025/8/5

四面体ABCDにおいて、点A, B, C, Dの位置ベクトルをそれぞれ$\vec{a}, \vec{b}, \vec{c}, \vec{d}$とする。三角形ABCの重心Gの位置ベクトルを$\vec{g...

ベクトル空間図形重心外分
2025/8/5

四面体ABCDにおいて、頂点A, B, C, Dの位置ベクトルをそれぞれ $\vec{a}$, $\vec{b}$, $\vec{c}$, $\vec{d}$ とします。三角形BCDの重心をGとし、線...

ベクトル空間図形重心内分点
2025/8/5

四面体ABCDがあり、点A, B, C, Dの位置ベクトルがそれぞれ $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ である。三角形ACDの重心をGとし、線分BGを1:2に内...

ベクトル空間図形重心内分点四面体
2025/8/5

四面体ABCDにおいて、点A, B, C, Dの位置ベクトルをそれぞれ$\vec{a}, \vec{b}, \vec{c}, \vec{d}$とする。三角形BCDの重心をGとし、線分AGを2:1に内分...

ベクトル空間図形重心内分点
2025/8/5