$y$は$x$に比例し、$x = 3$のとき、$y = -9$です。$x = 2$のときの$y$の値を求めなさい。

代数学比例一次関数方程式
2025/6/25

1. 問題の内容

yyxxに比例し、x=3x = 3のとき、y=9y = -9です。x=2x = 2のときのyyの値を求めなさい。

2. 解き方の手順

yyxxに比例するので、y=axy = axと表すことができます。ここで、aaは比例定数です。
x=3x = 3のとき、y=9y = -9なので、
9=a×3-9 = a \times 3
a=3a = -3
よって、y=3xy = -3xという関係式が得られます。
次に、x=2x = 2のときのyyの値を求めます。
y=3×2y = -3 \times 2
y=6y = -6

3. 最終的な答え

y=6y = -6

「代数学」の関連問題

$x+y = \sqrt{6}$ かつ $xy = 2$ のとき、(1) $x^2 + y^2$ と (2) $\frac{2}{x} + \frac{2}{y}$ の値を求めよ。

式の計算代入平方根
2025/6/25

以下の3つの放物線を同じ座標平面上に描き、それぞれの実数解(もし存在すれば)を求めよ。 (i) $y = x^2$ (ii) $y = x^2 + 1$ (iii) $y = x^2 - 1$ 方程式...

二次関数放物線グラフ実数解零点平行移動線対称
2025/6/25

次の4つの式を、公式を用いて展開する問題です。 (1) $(3x-2y)(x+5y)$ (2) $(5a+4b)(5a-4b)$ (3) $(a+b-2c)^2$ (4) $(x+2y)^2(x-2y...

展開多項式公式
2025/6/25

与えられた等比数列について、以下の条件から初項と公比を求めます。 (1) 初めの2項の和が-2、次の2項の和が-8 (2) 初項から第3項までの和が3、第4項から第6項までの和が-24

等比数列連立方程式数列の和公比初項
2025/6/25

ある等差数列の初項から第 $n$ 項までの和を $S_n$ とするとき、$S_{10} = 100$、$S_{20} = 400$ である。この数列の初項から第30項までの和 $S_{30}$ を求め...

等差数列数列等差数列の和
2025/6/25

与えられた式 $ (1-x)S = 1 + 3(x + x^2 + ... + x^{n-1}) $ を変形して $ S $ を求める問題です。途中の計算過程と最終的な $ S $ の式が与えられてい...

等比数列式の変形分数式
2025/6/25

画像に書かれている $S$ の値を求める問題です。具体的には、以下の式で表される $S$ を求めることになります。 $S = \frac{1 + 2x - (3n + 1)x^n + (3n - 2)...

数列の和代数式式変形公式
2025/6/25

与えられた式を計算し、Sを求める問題です。 式1: $\frac{1+2x-(3n+1)x^n+(3n-2)x^{n+1}}{1-x}$ 式2: $S=\frac{1+2x-(3n+1)x^n+(3n...

分数式式の計算多項式
2025/6/25

2つの不等式 $3|x| - |x-2| \le 8$ (これを不等式①とする) と $2x + 7 \ge 0$ (これを不等式②とする) について考える。絶対値を含む不等式①の解を求める問題。

絶対値不等式連立不等式
2025/6/25

多項式 $A = x^6 - 6x^5 + 15x^4 - 19x^3 + 12x^2 - 3x$ が与えられている。 $t = x^3 - 3x^2 + 3x$ とおいたとき、 (1) $A$ を ...

多項式因数分解式の計算値の代入
2025/6/25