与えられた複素数方程式を解きます。 (1) $z^2 = -1 + i$ (2) $z^3 = -2$ (3) $z^3 = -2 + 2i$代数学複素数複素数方程式解の公式極形式2025/6/251. 問題の内容与えられた複素数方程式を解きます。(1) z2=−1+iz^2 = -1 + iz2=−1+i(2) z3=−2z^3 = -2z3=−2(3) z3=−2+2iz^3 = -2 + 2iz3=−2+2i2. 解き方の手順(1) z2=−1+iz^2 = -1 + iz2=−1+iz=x+yiz = x + yiz=x+yiとおくと、(x+yi)2=−1+i(x + yi)^2 = -1 + i(x+yi)2=−1+ix2−y2+2xyi=−1+ix^2 - y^2 + 2xyi = -1 + ix2−y2+2xyi=−1+i実部と虚部を比較して、x2−y2=−1x^2 - y^2 = -1x2−y2=−12xy=12xy = 12xy=1y=12xy = \frac{1}{2x}y=2x1を代入して、x2−14x2=−1x^2 - \frac{1}{4x^2} = -1x2−4x21=−14x4+4x2−1=04x^4 + 4x^2 - 1 = 04x4+4x2−1=0x2=−4±16+168=−4±428=−1±22x^2 = \frac{-4 \pm \sqrt{16 + 16}}{8} = \frac{-4 \pm 4\sqrt{2}}{8} = \frac{-1 \pm \sqrt{2}}{2}x2=8−4±16+16=8−4±42=2−1±2x2>0x^2 > 0x2>0なので、x2=−1+22x^2 = \frac{-1 + \sqrt{2}}{2}x2=2−1+2x=±−1+22x = \pm \sqrt{\frac{-1 + \sqrt{2}}{2}}x=±2−1+2x=−1+22x = \sqrt{\frac{-1 + \sqrt{2}}{2}}x=2−1+2のとき、y=12−1+22=14⋅−1+22=12(−1+2)=1−2+22=2+224(2−1)=1+22y = \frac{1}{2\sqrt{\frac{-1 + \sqrt{2}}{2}}} = \sqrt{\frac{1}{4 \cdot \frac{-1 + \sqrt{2}}{2}}} = \sqrt{\frac{1}{2(-1+\sqrt{2})}} = \sqrt{\frac{1}{-2 + 2\sqrt{2}}} = \sqrt{\frac{2 + 2\sqrt{2}}{4(2-1)}} = \sqrt{\frac{1 + \sqrt{2}}{2}}y=22−1+21=4⋅2−1+21=2(−1+2)1=−2+221=4(2−1)2+22=21+2x=−−1+22x = -\sqrt{\frac{-1 + \sqrt{2}}{2}}x=−2−1+2のとき、y=−1+22y = -\sqrt{\frac{1 + \sqrt{2}}{2}}y=−21+2よって、z=±(−1+22+i1+22)z = \pm \left( \sqrt{\frac{-1 + \sqrt{2}}{2}} + i\sqrt{\frac{1 + \sqrt{2}}{2}} \right)z=±(2−1+2+i21+2)(2) z3=−2z^3 = -2z3=−2z3=2eiπz^3 = 2e^{i\pi}z3=2eiπz=23eiπ+2kπ3z = \sqrt[3]{2} e^{i\frac{\pi + 2k\pi}{3}}z=32ei3π+2kπ, k=0,1,2k=0,1,2k=0,1,2z0=23eiπ3=23(cosπ3+isinπ3)=23(12+i32)z_0 = \sqrt[3]{2} e^{i\frac{\pi}{3}} = \sqrt[3]{2} \left( \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right) = \sqrt[3]{2} \left( \frac{1}{2} + i \frac{\sqrt{3}}{2} \right)z0=32ei3π=32(cos3π+isin3π)=32(21+i23)z1=23eiπ+2π3=23eiπ=23(cosπ+isinπ)=−23z_1 = \sqrt[3]{2} e^{i\frac{\pi + 2\pi}{3}} = \sqrt[3]{2} e^{i\pi} = \sqrt[3]{2}(\cos \pi + i \sin \pi) = -\sqrt[3]{2}z1=32ei3π+2π=32eiπ=32(cosπ+isinπ)=−32z2=23eiπ+4π3=23ei5π3=23(cos5π3+isin5π3)=23(12−i32)z_2 = \sqrt[3]{2} e^{i\frac{\pi + 4\pi}{3}} = \sqrt[3]{2} e^{i\frac{5\pi}{3}} = \sqrt[3]{2} \left( \cos \frac{5\pi}{3} + i \sin \frac{5\pi}{3} \right) = \sqrt[3]{2} \left( \frac{1}{2} - i \frac{\sqrt{3}}{2} \right)z2=32ei3π+4π=32ei35π=32(cos35π+isin35π)=32(21−i23)(3) z3=−2+2iz^3 = -2 + 2iz3=−2+2iz3=22ei3π4z^3 = 2\sqrt{2} e^{i\frac{3\pi}{4}}z3=22ei43πz=223ei3π4+2kπ3z = \sqrt[3]{2\sqrt{2}} e^{i \frac{\frac{3\pi}{4} + 2k\pi}{3}}z=322ei343π+2kπ, k=0,1,2k=0,1,2k=0,1,2z=2ei(π4+2kπ3)z = \sqrt{2} e^{i (\frac{\pi}{4} + \frac{2k\pi}{3})}z=2ei(4π+32kπ)z0=2eiπ4=2(22+i22)=1+iz_0 = \sqrt{2} e^{i \frac{\pi}{4}} = \sqrt{2} \left( \frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2} \right) = 1 + iz0=2ei4π=2(22+i22)=1+iz1=2ei(π4+2π3)=2ei11π12=2(cos11π12+isin11π12)z_1 = \sqrt{2} e^{i (\frac{\pi}{4} + \frac{2\pi}{3})} = \sqrt{2} e^{i \frac{11\pi}{12}} = \sqrt{2} \left( \cos \frac{11\pi}{12} + i \sin \frac{11\pi}{12} \right)z1=2ei(4π+32π)=2ei1211π=2(cos1211π+isin1211π)z2=2ei(π4+4π3)=2ei19π12=2(cos19π12+isin19π12)z_2 = \sqrt{2} e^{i (\frac{\pi}{4} + \frac{4\pi}{3})} = \sqrt{2} e^{i \frac{19\pi}{12}} = \sqrt{2} \left( \cos \frac{19\pi}{12} + i \sin \frac{19\pi}{12} \right)z2=2ei(4π+34π)=2ei1219π=2(cos1219π+isin1219π)3. 最終的な答え(1) z=±(−1+22+i1+22)z = \pm \left( \sqrt{\frac{-1 + \sqrt{2}}{2}} + i\sqrt{\frac{1 + \sqrt{2}}{2}} \right)z=±(2−1+2+i21+2)(2) z=23(12+i32),−23,23(12−i32)z = \sqrt[3]{2} \left( \frac{1}{2} + i \frac{\sqrt{3}}{2} \right), -\sqrt[3]{2}, \sqrt[3]{2} \left( \frac{1}{2} - i \frac{\sqrt{3}}{2} \right)z=32(21+i23),−32,32(21−i23)(3) z=1+i,2ei11π12,2ei19π12z = 1 + i, \sqrt{2} e^{i \frac{11\pi}{12}}, \sqrt{2} e^{i \frac{19\pi}{12}}z=1+i,2ei1211π,2ei1219π