与えられた2次式 $x^2 + 2x - 2$ を因数分解しなさい。

代数学因数分解二次方程式解の公式
2025/6/25

1. 問題の内容

与えられた2次式 x2+2x2x^2 + 2x - 2 を因数分解しなさい。

2. 解き方の手順

与えられた2次式は x2+2x2x^2 + 2x - 2 です。
これは因数分解できない形です。
しかし、無理やり因数分解をするために、解の公式を利用して解を求めます。
2次方程式 ax2+bx+c=0ax^2 + bx + c = 0 の解の公式は次の通りです。
x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
この問題では、a=1a = 1, b=2b = 2, c=2c = -2 です。
解の公式に代入すると、
x=2±224(1)(2)2(1)x = \frac{-2 \pm \sqrt{2^2 - 4(1)(-2)}}{2(1)}
x=2±4+82x = \frac{-2 \pm \sqrt{4 + 8}}{2}
x=2±122x = \frac{-2 \pm \sqrt{12}}{2}
x=2±232x = \frac{-2 \pm 2\sqrt{3}}{2}
x=1±3x = -1 \pm \sqrt{3}
したがって、解は x1=1+3x_1 = -1 + \sqrt{3}x2=13x_2 = -1 - \sqrt{3} です。
因数分解の形は (xx1)(xx2)(x - x_1)(x - x_2) となるので、
(x(1+3))(x(13))(x - (-1 + \sqrt{3}))(x - (-1 - \sqrt{3}))
(x+13)(x+1+3)(x + 1 - \sqrt{3})(x + 1 + \sqrt{3})

3. 最終的な答え

(x+13)(x+1+3)(x + 1 - \sqrt{3})(x + 1 + \sqrt{3})

「代数学」の関連問題

与えられた連立方程式を解いて、$x$と$y$の値を求めます。連立方程式は以下の通りです。 $x + 6 = 3x - 2y = 2y - 1$

連立方程式一次方程式代入法
2025/6/25

与えられた方程式 $3x + 2y = 1 = -2x - y$ を満たす $x$ と $y$ の値を求める問題です。これは連立方程式とみなすことができます。

連立方程式一次方程式代入法方程式の解
2025/6/25

与えられた式 $x+y = x-y+2 = 7$ を満たす $y$ の値を求めよ。

連立方程式一次方程式式の変形解の探索
2025/6/25

与えられた連立方程式 $2x - y = 4x + 3y = 10$ を解き、$x$と$y$の値を求める。

連立方程式方程式代入法
2025/6/25

Aさんはトライアスロン大会に参加しました。水泳0.2kmを4分間で泳ぎ、自転車コースを時速15km、マラソンコースを時速10kmで走りました。3種目に要した合計時間は1時間で、コースの距離の合計が13...

連立方程式文章題距離時間速さ
2025/6/25

$\cos 2\theta = \cos \theta - 1$ を解きます。

三角関数三角方程式倍角の公式方程式
2025/6/25

$0 \le \theta < 2\pi$ のとき、次の方程式を解く。 $\sin{2\theta} - \sqrt{3}\sin{\theta} = 0$

三角関数三角方程式sincos方程式
2025/6/25

与えられた連立不等式を解く問題です。連立不等式は以下の通りです。 $ \begin{cases} x^2-4x+2>0 \\ x^2+2x-8<0 \end{cases} $

連立不等式二次不等式解の公式数直線
2025/6/25

2次不等式 $x^2 - 5x + 9 > 0$ を解く問題です。

二次不等式判別式平方完成放物線
2025/6/25

与えられた式 $\sqrt[6]{4\sqrt[3]{32}}$ を簡略化します。

指数根号累乗根簡略化
2025/6/25