(1) $\int \log(3x) dx$ を求めよ。 (2) $\int \log(x+1) dx$ を求めよ。解析学積分部分積分法対数関数2025/6/251. 問題の内容(1) ∫log(3x)dx\int \log(3x) dx∫log(3x)dx を求めよ。(2) ∫log(x+1)dx\int \log(x+1) dx∫log(x+1)dx を求めよ。2. 解き方の手順(1)部分積分法を用いて計算します。u=log(3x)u = \log(3x)u=log(3x), dv=dxdv = dxdv=dx とすると、du=13x⋅3dx=1xdxdu = \frac{1}{3x} \cdot 3 dx = \frac{1}{x} dxdu=3x1⋅3dx=x1dx, v=xv = xv=x となります。よって、∫log(3x)dx=xlog(3x)−∫x⋅1xdx=xlog(3x)−∫1dx=xlog(3x)−x+C\int \log(3x) dx = x \log(3x) - \int x \cdot \frac{1}{x} dx = x \log(3x) - \int 1 dx = x \log(3x) - x + C∫log(3x)dx=xlog(3x)−∫x⋅x1dx=xlog(3x)−∫1dx=xlog(3x)−x+C(2)部分積分法を用いて計算します。u=log(x+1)u = \log(x+1)u=log(x+1), dv=dxdv = dxdv=dx とすると、du=1x+1dxdu = \frac{1}{x+1} dxdu=x+11dx, v=xv = xv=x となります。よって、∫log(x+1)dx=xlog(x+1)−∫xx+1dx=xlog(x+1)−∫x+1−1x+1dx\int \log(x+1) dx = x \log(x+1) - \int \frac{x}{x+1} dx = x \log(x+1) - \int \frac{x+1-1}{x+1} dx∫log(x+1)dx=xlog(x+1)−∫x+1xdx=xlog(x+1)−∫x+1x+1−1dx=xlog(x+1)−∫(1−1x+1)dx=xlog(x+1)−(x−log(x+1))+C=xlog(x+1)−x+log(x+1)+C=(x+1)log(x+1)−x+C= x \log(x+1) - \int (1 - \frac{1}{x+1}) dx = x \log(x+1) - (x - \log(x+1)) + C = x \log(x+1) - x + \log(x+1) + C = (x+1)\log(x+1) - x + C=xlog(x+1)−∫(1−x+11)dx=xlog(x+1)−(x−log(x+1))+C=xlog(x+1)−x+log(x+1)+C=(x+1)log(x+1)−x+C3. 最終的な答え(1) ∫log(3x)dx=xlog(3x)−x+C\int \log(3x) dx = x \log(3x) - x + C∫log(3x)dx=xlog(3x)−x+C(2) ∫log(x+1)dx=(x+1)log(x+1)−x+C\int \log(x+1) dx = (x+1)\log(x+1) - x + C∫log(x+1)dx=(x+1)log(x+1)−x+C