最新の問題

全体集合$U$、集合$A$、集合$B$が与えられています。 $U = \{x | x \text{は12より小さい自然数}\}$ $A = \{4, 5, 6, 7, 8\}$ $B = \{1, 3...

集合補集合和集合共通部分
2025/6/6

$\lim_{t \to 0} \frac{\sin^{-1} t}{t}$ を求める問題です。

極限ロピタルの定理逆三角関数微分
2025/6/6

与えられた式 $\sqrt[3]{6} \times \sqrt[6]{6} \times \sqrt[4]{12}$ を計算して簡単にします。

指数根号計算
2025/6/6

与えられた数式 $\left\{ \left( \frac{9}{4} \right)^{-\frac{5}{4}} \right\}^{\frac{2}{5}}$ を計算し、簡略化します。

指数指数法則分数平方根計算
2025/6/6

問題(9)は、極限 $\lim_{x \to \infty} \left(1 + \frac{a}{x^2 + x}\right)^{x^2}$ を計算することです。 問題(10)は、極限 $\lim...

極限指数関数対数関数ロピタルの定理
2025/6/6

与えられた数式を計算します。数式は $\left\{\left(\frac{9}{4}\right)^{-\frac{5}{4}}\right\}^{\frac{2}{5}}$ です。

指数計算分数平方根
2025/6/6

与えられた数式 $\sqrt[4]{27} \times \sqrt{27} \div \sqrt[4]{3}$ を計算し、簡単にしてください。

指数平方根計算
2025/6/6

次の極限を求めます。 $\lim_{x\to 0} (1 + x + x^2)^{1/x}$

極限ロピタルの定理自然対数指数関数
2025/6/6

ロピタルの定理を用いて、以下の3つの極限値を求めます。 (1) $\lim_{x \to 0} (1 + \sin 2x)^{\frac{1}{x}}$ (2) $\lim_{x \to \infty...

極限ロピタルの定理微積分指数関数逆三角関数
2025/6/6

与えられた式 $\sqrt[3]{18} \times \sqrt[3]{12}$ を計算する問題です。

立方根計算根号
2025/6/6