代数学
方程式、関数、多項式などの代数学に関する問題
このカテゴリーの問題
与えられた式 $\frac{1}{2}(m+M)V^2 = mgh + Mgh$ を $h$ について解く問題です。
数式変形物理方程式
2025/3/18
与えられた式 $mv = mV + MV$ を $V$ について解く問題です。
方程式式の変形物理
2025/3/18
与えられた式 $x^2 - y^2 + x + 5y - 6$ を因数分解します。
因数分解二次式解の公式
2025/3/18
$y$ が $x$ に比例しており、$x=2$ のとき $y=6$ である。関数 $y$ を $x$ を用いて表す。
比例一次関数比例定数
2025/3/17
次の3つの式を展開し、$x$の降べきの順に整理します。 (1) $(x+2)(3x-5)$ (2) $(2x+1)(x^2-3x+4)$ (3) $(x-3)(2x^2+x-4)$
式の展開多項式分配法則降べきの順
2025/3/17
ノート1冊とコンパス1つを買うと480円になります。コンパス1つの値段は、ノート1冊の値段の3倍です。 (1) 代金の合計はノートの値段の何倍になるかを求めます。 (2) ノートとコンパスの値段をそれ...
文章題方程式一次方程式連立方程式代金価格
2025/3/17
チョコレート1個とあめ5個を買うと180円になります。また、チョコレート1個とあめ8個を買うと240円になります。このとき、あめ1個とチョコレート1個の値段をそれぞれ求めなさい。
連立方程式文章題価格
2025/3/17
次の方程式を解く問題です。 $\log_2(x+2) = \log_2(x^2 - 3x - 10)$
対数方程式二次方程式真数条件
2025/3/17
次の不等式の解を求めなさい。 $2 \log_{\frac{1}{3}} x < \log_{\frac{1}{3}} (2x + 3)$
対数不等式対数不等式真数条件
2025/3/17
次の不等式の解を求めよという問題です。 $2 \log_{\frac{1}{2}}(x-2) > \log_{\frac{1}{2}}(x+4)$
対数不等式真数条件対数不等式
2025/3/17