解析学

微分、積分、極限などの解析学に関する問題

このカテゴリーの問題

曲線 $y = -x^2 + 2x$ と $x$ 軸で囲まれた部分の面積 $S$ を求める問題です。

積分面積二次関数定積分
2025/3/21

$\sin \theta = -\frac{1}{\sqrt{2}}$ を満たす $\theta$ の値を $0^\circ \le \theta < 360^\circ$ の範囲で小さい順に求める問...

三角関数sin角度方程式
2025/3/21

与えられたグラフが示す対数関数の式 $y = \log_{\Box} x$ において、$\Box$ に入る値を求める問題です。グラフから、$x=4$ のとき $y=1$ であることがわかります。

対数関数グラフ指数関数方程式
2025/3/21

不定積分 $\int (2x-2)^2 dx$ を求め、$\frac{(1)}{(2)}x^3 + (3)x^2 + (4)x + C$ の形式で答えなさい。

不定積分積分多項式
2025/3/21

次の極限値を求めます。 $\lim_{x \to 1} \frac{x^2 + x - 2}{x - 1}$

極限分数式因数分解関数の極限
2025/3/21

曲線 $y = 2x^3$ と点 $A(1, a)$ が与えられている。 (1) 曲線上の点 $B(t, 2t^3)$ における接線が点 $A$ を通るとき、$a$ を $t$ を用いて表す。 (2)...

微分接線導関数三次関数方程式
2025/3/21

与えられた関数 $F(t) = \int_0^t e^{-2x} \sin^2 x \, dx$, $I(t) = \int_0^t e^{-2x} \cos 2x \, dx$, $J(t) = \...

積分極値部分積分極限
2025/3/21

3次関数 $f(x) = x^3 + ax^2 + b$ について、曲線 $y = f(x)$ 上の点 $P(t, f(t))$ における接線を $l$ とする。 (1) 接線 $l$ の方程式を求め...

3次関数接線微分方程式領域
2025/3/21

$dv/dr = 2\pi r (2r - \sqrt{\frac{k-4\pi r^2}{6}})$ のとき、区間 $0 < r < \frac{1}{2}\sqrt{\frac{k}{\pi}}$...

微分増減表極値関数の増減微分方程式
2025/3/21

$dv/dr = 2\pi r(2r - \sqrt{\frac{k-4\pi r^2}{6}})$ のとき、$0 < r < \frac{1}{2}\sqrt{\frac{k}{\pi}}$ という...

微分増減表極値微分方程式
2025/3/21