解析学
微分、積分、極限などの解析学に関する問題
このカテゴリーの問題
与えられた問題は、以下の3つのセクションに分かれています。 * 1.7 媒介変数表示された関数とその導関数を求める問題。2つの小問A,Bがあります。 * 1.8 方程式で定められた関数について...
導関数媒介変数表示接線微分陰関数
2025/3/30
与えられた複数の関数の導関数を計算し、空欄を埋める問題です。また、高次導関数に関する問題もあります。
導関数合成関数の微分三角関数の微分指数関数の微分対数関数の微分高次導関数
2025/3/30
問題は、与えられた関数が$x=0$で微分可能かどうかを判定する問題と、与えられた関数の導関数を求める問題の2つに分かれています。
微分可能性導関数極限関数の微分
2025/3/30
与えられた3つの極限を計算します。 (1) $\lim_{x \to \infty} 7^x$ (2) $\lim_{x \to \infty} (\frac{1}{4})^x$ (3) $\lim_...
極限指数関数対数関数
2025/3/30
$\lim_{x \to -\infty} (\sqrt{x^2 + 2x} + x)$ を求めよ。
極限関数の極限ルート無限大
2025/3/30
与えられた極限を計算します。 (1) $\lim_{x \to 3+0} \frac{x^2 - 9}{|x-3|}$ (2) $\lim_{x \to 3-0} \frac{x^2 - 9}{|x-...
極限ガウス記号
2025/3/30
与えられた無限級数の収束・発散を調べ、収束する場合はその和を求める問題です。 与えられた級数は次の通りです。 $\frac{1}{2 \cdot 5} + \frac{1}{5 \cdot 8} + ...
無限級数収束部分分数分解極限
2025/3/30
ある斜面をボールが転がるとき、$x$ 秒間に転がる距離を $y$ mとすると、$y = 2x^2$という関係が成り立つ。このとき、1秒後から1.01秒後までの間の平均の速さを求める。
微分平均変化率二次関数
2025/3/30
$f(x) = 2^x$、$g(x) = \log_4 x$ のとき、合成関数 $(g \circ f)(x)$ と $(f \circ g)(x)$ を求め、それぞれア~ウの中から正しいものを選び、...
合成関数指数関数対数関数
2025/3/30
(1) $f'(x) = x^2 + x + 1$ かつ $f(0) = 2$ である関数 $f(x)$ を求めよ。 (2) 定積分 $\int_{-2}^{1} |x^2 - x - 2| dx$ ...
積分定積分絶対値積分計算
2025/3/30