解析学

微分、積分、極限などの解析学に関する問題

このカテゴリーの問題

定積分 $\int_3^x f(t) dt = 3x^2 - 7x - a$ を満たす関数 $f(t)$ と定数 $a$ の値を求める。

定積分微積分学の基本定理積分
2025/3/20

関数 $f(x)$ が $f(x) = 9x^2 + 3x + \int_{-1}^{1} f(t) dt$ を満たすとき、$f(x)$ を求めよ。

積分定積分関数
2025/3/20

球と立方体があり、それらの表面積の和が一定の値 $k > 0$ に保たれています。球の半径を $r$ とし、球と立方体の体積の和を $V$ とします。 (1) $V$ を $r$ を用いて表します。 ...

最適化微分体積表面積数式処理
2025/3/20

$y = 2x^3 - 4x^2$ を $x$ で微分した $y'$ を求め、空欄を埋める問題です。$y' = (65) x^{(66)} - (67) x$ の形式で答えます。

微分多項式微分計算
2025/3/20

球と立方体があり、それらの表面積の和が一定の値 $k > 0$ に保たれている。球の半径を $r$ とし、球と立方体の体積の和を $V$ とする。 (1) $V$ を $r$ を用いて表す。 (2) ...

微分体積表面積最適化関数
2025/3/20

球の表面積がなぜ $4\pi r^2$ なのかを説明する問題です。ここで、$r$ は球の半径を表します。

球の表面積微積分回転体積分極座標
2025/3/20

関数 $f(x)$ が積分を含む方程式 $f(x) = 3x + 2\int_{0}^{1} f(t) dt$ を満たすとき、$f(x)$ を求める問題です。

積分関数定積分積分方程式
2025/3/20

与えられた二つの定積分の値を計算する問題です。 (1) $\int_1^3 (x+2)^2 dx - \int_1^3 (x-2)^2 dx$ (2) $\int_{-1}^0 (3x-1)^2 dx...

定積分積分計算
2025/3/20

与えられた定積分を計算する問題です。 (1) $\int_{-1}^{2}(5x-x^2)dx + \int_{-1}^{2}(2x^2-4x)dx$ を計算します。 (2) $\int_{-1}^{...

定積分積分計算積分
2025/3/20

定積分 $\int_{-1}^{3} (2x+1)(x-3) \, dx$ を計算し、結果を分数で表す問題です。

定積分積分多項式
2025/3/20