幾何学
図形、空間、測量などの幾何学に関する問題
このカテゴリーの問題
連立不等式 $x^2 + y^2 \le 1$ $x + y \le 1$ $3x - y \le 3$ の表す領域を $D$ とし、原点を中心とする半径1の円を $C$ とする。点 $A(\frac...
連立不等式領域円直線接線最大値最小値
2025/6/14
ベクトル $\vec{a} = \begin{bmatrix} 2 \\ 4 \\ 3 \end{bmatrix}$ とベクトル $\vec{b} = \begin{bmatrix} 5 \\ 9 \...
ベクトル外積直交単位ベクトル
2025/6/14
三角形ABCの頂点A(3,4), B(0,0), C(5,0)が与えられています。 (1) 各頂点から対辺に下ろした垂線が1点で交わることを示しなさい。 (2) 各辺の垂直二等分線が1点で交わることを...
三角形垂心外心座標平面垂直二等分線
2025/6/14
面積が $2\sqrt{2}$ である鋭角三角形 ABC があり, $AB=3$, $AC=2$ である。このとき, $\sin A$, $BC$, $AH$, および $\triangle AHK$...
三角形面積正弦定理余弦定理三角比外接円
2025/6/14
底面の半径が $2$ cm、母線の長さが $6$ cmの円錐がある。底面の円周上の1点から、円錐の側面を1周して同じ点に戻るように糸をかける。この糸が最も短くなるときの長さを求める。
円錐展開図余弦定理幾何学的計算
2025/6/14
平行四辺形ABCDにおいて、角Bの二等分線がADと交わる点をF、角Cの二等分線がADと交わる点をEとする。このとき、角xの大きさと線分EFの長さyを求める。BC=12cm、CD=7cmとする。
平行四辺形角度線分二等辺三角形角の二等分線
2025/6/14
底面の半径が 2 cm、母線の長さが 6 cm の円錐がある。底面の円周上の 1 点から円錐の側面を 1 周して同じ点に戻るように糸をかける。この糸が最も短くなるときの長さを選択肢の中から選ぶ。
円錐展開図余弦定理最短距離
2025/6/14
放物線 $y = -2x^2 + 3x + 1$ を、以下の条件で移動した後の放物線の方程式をそれぞれ求めます。 (1) $x$軸方向に-3, $y$軸方向に4だけ平行移動 (2) $x$軸に関して対...
放物線平行移動対称移動二次関数
2025/6/14
南北に7本、東西に6本の道がある。ただし、C地点は通れないものとする。1区間の距離は南北、東西で等しいものとする。 (1) O地点を出発し、A地点を通り、P地点へ最短距離で行く道順は何通りあるか。 (...
組み合わせ最短経路格子点
2025/6/14
四面体OABCにおいて、辺ABを1:2に内分する点をD、線分CDを3:5に内分する点をE、線分OEを1:3に内分する点をFとする。直線AFが平面OBCと交わる点をGとするとき、以下の問いに答えよ。 (...
ベクトル空間図形内分四面体
2025/6/14