最新の問題

$\sqrt{2}$, $\sqrt{(16)}$, $(17)$, $\sqrt{(18)}$, $3\sqrt{6}, ...$ が等比数列になるように、(16), (17), (18) に入る数...

等比数列数列累乗根指数
2025/3/20

$\int_{a}^{x} f(t) dt = 2x^2 - 3x + 1$ を満たす関数 $f(t)$ と定数 $a$ の値を求めます。

積分微積分学の基本定理定積分積分方程式
2025/3/20

定積分 $\int_3^x f(t) dt = 3x^2 - 7x - a$ を満たす関数 $f(t)$ と定数 $a$ の値を求める。

定積分微積分学の基本定理積分
2025/3/20

関数 $f(x)$ が $f(x) = 9x^2 + 3x + \int_{-1}^{1} f(t) dt$ を満たすとき、$f(x)$ を求めよ。

積分定積分関数
2025/3/20

球と立方体があり、それらの表面積の和が一定の値 $k > 0$ に保たれています。球の半径を $r$ とし、球と立方体の体積の和を $V$ とします。 (1) $V$ を $r$ を用いて表します。 ...

最適化微分体積表面積数式処理
2025/3/20

$y = 2x^3 - 4x^2$ を $x$ で微分した $y'$ を求め、空欄を埋める問題です。$y' = (65) x^{(66)} - (67) x$ の形式で答えます。

微分多項式微分計算
2025/3/20

$0 < \theta < \pi$ のとき、$\sin \theta > \frac{\sqrt{3}}{2}$ を満たす $\theta$ の範囲を $\frac{(61)}{(62)} \pi ...

三角関数不等式sin角度範囲
2025/3/20

球と立方体があり、それらの表面積の和が一定の値 $k > 0$ に保たれている。球の半径を $r$ とし、球と立方体の体積の和を $V$ とする。 (1) $V$ を $r$ を用いて表す。 (2) ...

微分体積表面積最適化関数
2025/3/20

$90^\circ < \theta < 180^\circ$ の範囲で、$\cos \theta = -\frac{1}{2}$ となる $\theta$ の値を求める問題です。

三角関数cos角度単位円
2025/3/20

与えられた数式 $(2x^2 + 3)(x^2 - 1 - 4x)$ を展開して整理してください。

多項式展開整理
2025/3/20