解析学
微分、積分、極限などの解析学に関する問題
このカテゴリーの問題
全微分可能な3変数関数 $f(x, y, z)$ において、$x = u - v$, $y = v - w$, $z = w - u$ のとき、$\frac{\partial f}{\partial ...
偏微分合成関数
2025/4/18
$\int \frac{x^2 - 3x + 2}{x^2} dx$ を求める問題です。
積分不定積分有理関数
2025/4/18
与えられた数列の極限を求める問題です。問題文には5つの数列が提示されています。 (1) $\frac{\sqrt{n^3 - 1}}{\sqrt{n^2 - 1} + \sqrt{n}}$ (2) $...
極限数列有理化対数関数三角関数
2025/4/17
$\frac{4}{75}S_n = 2\left(\frac{5}{16} - \frac{4n+5}{16} \cdot \frac{1}{5^n}\right) - \frac{1}{4}\le...
級数数列計算
2025/4/17
与えられた式を計算して、$S_n$ を求める問題です。与えられた式は以下の通りです。 $\frac{4}{75}S_n = 2 \sum_{k=1}^{n} \frac{k}{5^k} - \sum_...
級数シグマ数列の和計算
2025/4/17
画像に書かれている数式を解く問題です。問題は数列の和を求めるもので、以下のような式が与えられています。 $\frac{4}{5}S_n = 3\{1 \cdot (\frac{1}{5})^0 + 3...
級数数列総和シグマ公式
2025/4/17
$0 \le \alpha < 2\pi$, $0 \le \beta < 2\pi$, $0 \le \gamma < 2\pi$ のとき、 $\cos(\alpha + \beta + \gamm...
三角関数加法定理和積の公式三角関数の恒等式
2025/4/17
数列$\{a_n\}$の第n項が$a_n = 3 \cdot (\frac{1}{5})^{n-1} = \frac{15}{5^n}$で与えられている。このとき、$S_n$を$\frac{S_n}{...
級数数列シグマ無限級数
2025/4/17
数列 $\{a_n\}$ は初項が3、公比が $\frac{1}{5}$ の等比数列である。数列 $\{n^2a_n\}$ の初項から第 $n$ 項までの和 $S_n = \sum_{k=1}^n k...
数列級数等比数列和無限級数数学的帰納法
2025/4/17
関数 $f(x) = 2x^3 - 3(a+1)x^2 + bx - 4$ があり、$f'(a) = 0$ を満たしている。ただし、$a$, $b$ は定数で、$a < 0$ とする。 (1) $b$...
微分極値関数の増減三次関数
2025/4/17