解析学

微分、積分、極限などの解析学に関する問題

このカテゴリーの問題

2変数関数 $f(x, y) = \frac{x-1}{y^2+1} - x$ の、有界閉集合 $S = \{(x, y) | 0 \le x \le 4 - y^2\}$ における最大値と最小値を求...

多変数関数最大値最小値偏微分境界
2025/7/15

与えられた不等式をそれぞれ証明します。 a) $\frac{x}{x+1} \leq \log(1+x)$ ($x \geq 0$) b) $1+x \leq e^x \leq \frac{1}{1-...

不等式微分積分単調増加対数関数指数関数arctan
2025/7/15

## 問題の解答

微分極限最大値・最小値定積分合成関数の微分ロピタルの定理部分積分逆三角関数
2025/7/15

関数 $f(x) = 2x^2 + 2x + 1$ ($x \ge -\frac{1}{2}$) の逆関数を $g(x)$ とする。 (1) $g(x)$ の定義域を求める。 (2) $g(x)$ を...

逆関数定義域距離の最小値微分
2025/7/15

関数 $f(x) = 2x^2 + 2x + 1$ (定義域は $x \geq -\frac{1}{2}$)の逆関数を $g(x)$ とする。 (1) $g(x)$ の定義域を求めよ。 (2) $g(...

逆関数定義域関数の最小値微分
2025/7/15

与えられた極限を求めます。 $$ \lim_{h \to 0} h \sin \frac{1}{h} $$

極限三角関数はさみうちの原理
2025/7/15

次の積分について答えます。 $\iint_I (x^2 + y^2) dxdy$, $I = \{(x,y) \in \mathbb{R}^2 | 0 \le x^2 + y^2 \le 4\}$ ...

多重積分変数変換ヤコビアン極座標
2025/7/15

次の関数の第n次導関数を求めよ。 (a) $y = e^{2x}$ (b) $y = \log x$ (c) $y = x^2 e^x$

導関数微分指数関数対数関数ライプニッツの公式
2025/7/15

$\int \frac{1}{(x^2+1)^2} dx$ を求めよ。

積分置換積分三角関数arctan
2025/7/15

重積分 $\iint_I (x+y) dxdy$ を計算する問題です。ただし、$I = \{(x, y) \in \mathbb{R}^2 | 0 \le x \le 1, 0 \le y \le 1...

重積分変数変換ヤコビアン
2025/7/15