解析学

微分、積分、極限などの解析学に関する問題

このカテゴリーの問題

$0 \leq x \leq \pi$ において、$f(x) = 3\sin 2x + a(\sin x + \cos x) + 1$ とする。ただし、$a$ は正の定数である。 (1) $t = \...

三角関数最大値最小値置換積分
2025/4/14

次の5つの極限を計算する問題です。 (1) $\lim_{x\to 1} \frac{x^2 + 2x - 3}{x^3 - 5x^2 + 4}$ (2) $\lim_{x\to -2} \frac{...

極限関数三角関数有理化因数分解
2025/4/14

以下の3つの数列の極限を求めます。 (1) $a_n = (1+\frac{4}{n})^n$ (2) $a_n = \frac{3n+1}{2n}$ (3) $a_n = \frac{2^n + e...

数列極限指数関数対数関数
2025/4/14

$\alpha$ と $\beta$ が実数のとき、三角不等式 $|\alpha + \beta| \leq |\alpha| + |\beta|$ を証明せよ。

三角不等式絶対値不等式
2025/4/14

与えられた8つの関数の極限を求める問題です。 (1) $\lim_{x \to 2} (3x^2 + 5x - 5)$ (2) $\lim_{x \to 3} (x - 1)(x - 3)$ (3) ...

極限関数の極限不定形因数分解指数関数対数関数
2025/4/14

関数 $f(x) = \frac{1}{x}$ が与えられたとき、$f(x+1)$ を求める問題です。

関数関数の定義関数の代入
2025/4/14

与えられた数列の極限を求めます。 $$\lim_{n \to \infty} \frac{(2n+1)^n}{(n+1)^n}$$

極限数列指数関数計算
2025/4/13

次の極限を計算します。 $\lim_{n \to \infty} \frac{n}{\sqrt{n^2+1} - \sqrt{n}}$

極限数列有理化
2025/4/13

与えられた極限を計算します。問題は、 $\lim_{n \to \infty} \frac{1}{\sqrt{n+2} - \sqrt{n-2}}$ を求めることです。

極限関数の極限有理化
2025/4/13

問題は $\frac{d}{dt} (1 - \frac{d}{dt} (\sin t - \cos t))$ を計算することです。

微分三角関数
2025/4/13