解析学
微分、積分、極限などの解析学に関する問題
このカテゴリーの問題
$(5x-2)^3 = (5x)^3 - 3(5x)^2(2) + 3(5x)(2)^2 - 2^3 = 125x^3 - 150x^2 + 60x - 8$
不定積分置換積分積分
2025/4/13
与えられた数列の極限 $\lim_{n \to \infty} \frac{2n-1}{n^2-5n-3}$ を計算します。
極限数列計算
2025/4/13
$\frac{\pi}{12} = \frac{\pi}{4} - \frac{\pi}{6}$ であることを用いて、$\sin \frac{\pi}{12}$ と $\cos \frac{\pi}{...
三角関数加法定理sincos角度
2025/4/13
与えられた式を評価します。式は次のとおりです。 $\cot(\sqrt{y} - \sqrt{\pi}) + \frac{y^3 (\sin(y) + e)}{(y^2 + f(y))^3} \Big...
極限三角関数微分ロピタルの定理関数の評価
2025/4/13
## 問題の内容
不定積分積分置換積分三角関数指数関数多項式
2025/4/13
関数 $f(x) = e^{-x^2}$ の極大値、極小値、変曲点を求め、グラフを描く。
微分極値変曲点関数のグラフ
2025/4/13
問題は、媒介変数表示された関数について、$\frac{dy}{dx}$ を求める問題です。 具体的には、与えられた媒介変数 $t$ を用いて表された $x(t)$ と $y(t)$ から、$\frac...
微分媒介変数表示導関数
2025/4/13
与えられた10個の極限値を計算する問題です。ただし、$n$ は自然数です。問題文には「キーワードはロピタル!」と書かれているため、ロピタルの定理を利用することが推奨されています。
極限ロピタルの定理不定形微分
2025/4/13
関数 $f(\theta) = \sin 2\theta + 2(\sin \theta + \cos \theta) - 1$ について、以下の問題を解く。ただし、$0 \le \theta < 2...
三角関数最大値最小値合成変数変換
2025/4/13
放物線 $C: y = x^2 + 1$ と直線 $l: y = 4x + 6$ がある。$C$ と $l$ の交点の $x$ 座標の小さい順に $A$, $B$ とする。 (1) 点 $A$, $B...
放物線接線積分面積
2025/4/13