数論

整数、素数、合同式などの数論に関する問題

このカテゴリーの問題

問題文は、素数 $p$ に対して $p^5$ が持つ正の約数の個数を求め、次に、正の約数をちょうど1個持つ自然数を考え、そのような最小の自然数と、そのような奇数のうち2番目に小さいものを求める問題です...

素数約数約数の個数整数の性質
2025/4/13

正の整数の列を、第$n$群に$3n-1$個の整数が入るように群に分ける。 (1) 第4群の最後の数を求める。 (2) 第5群のすべての数の和を求める。 (3) 54が第何群の何番目の数かを求める。

数列整数の性質等差数列
2025/4/12

正の整数の列を、第n群に $3n-1$ 個の整数が入るように群に分ける。 (1) 第4群の最後の数を求める。 (2) 第5群のすべての数の和を求める。

数列群数列等差数列和の公式
2025/4/12

正の整数の列を、第 $n$ 群に $3n-1$ 個の整数が入るように群に分ける。第4群の最後の数を求める。

数列整数の性質
2025/4/12

(1) 200以下の自然数のうち、正の約数が8個である数は何個あるか。 (2) 18の倍数で、正の約数の個数が14個である自然数を求めよ。

約数素因数分解整数の性質
2025/4/12

$\frac{770}{n}$ が素数となるような自然数 $n$ を全て求めよ。

素数約数素因数分解
2025/4/12

$a$ と $b$ は100以下の正の整数であり、$b < a$を満たす。$\frac{a+1}{b+1}$ と $\frac{a}{b}$ がともに整数となるような整数の組 $(a, b)$ の個数...

整数の性質約数不等式代数
2025/4/12

$\left(\frac{1}{5}\right)^{10}$ を小数で表したとき、小数第何位に初めて0でない数字が現れるか。ただし、$\log_{10}2 = 0.3010$ とする。

対数常用対数桁数不等式
2025/4/10

正の奇数全体の集合をAとする。 以下のそれぞれの数について、集合Aに属するかどうかを判定し、$\in$または$\notin$の記号を使って表す。 (1) 5 (2) 6 (3) -3

集合奇数整数の性質記号
2025/4/10

$a, b$ は自然数で、$p = a^2 - a + 2ab + b^2 - b$ とする。$p$ が素数となるような $a, b$ をすべて求めよ。

素数因数分解整数問題
2025/4/9