最新の問題

与えられた三角比の表を用いて、$\sqrt{2}$ = 1.414 を利用し、鋭角$\theta$のおおよその大きさを求める。 問題文に具体的な$\theta$に対する条件が明示されていないため、ここ...

三角比角度三角関数近似
2025/6/16

関数 $y = \frac{3x+5}{x^2-4}$ の導関数を、商の微分公式を用いて求めよ。商の微分公式は $\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(...

導関数商の微分公式微分
2025/6/16

問題3.13の(1)について、関数 $y = \frac{5x+6}{3x+4}$ の導関数を求める。ここで、商の導関数の公式 $ \left(\frac{f(x)}{g(x)}\right)' = ...

導関数商の公式微分
2025/6/16

右図において、$AB = 2\sqrt{3}$, $AD = 2\sqrt{2}$であるとする。 (1) 線分AC, BCの長さを求めよ。 (2) $\sin\theta, \cos\theta, \...

三角比直角三角形三平方の定理辺の長さ角度
2025/6/16

$\log_{\frac{1}{3}}(x-1) \leq 2$ を満たす $x$ の範囲を求めよ。

対数不等式対数不等式
2025/6/16

角 $A$ が $\pi/2$ より大きい鈍角三角形 $ABC$ において、正弦定理 $2R = \frac{a}{\sin A}$ が成り立つことを証明する。ここで、$a, b, c$ はそれぞれ角...

正弦定理三角形外接円鈍角三角形円周角
2025/6/16

$\theta = \frac{\pi}{3}$ のとき、原点を通る直線 $y = (\tan \theta)x$ に垂直で、点 $(1, -3)$ を通る直線の式を求めよ。

直線傾き垂直三角比点と直線
2025/6/16

2025年の名目GDPが24000、GDPデフレーターが150であるという情報と、衣類と食料品の2025年の数量、衣類の価格の情報から、食料品の価格(空欄②)を求める問題です。

GDPGDPデフレーター実質GDP経済指標
2025/6/16

2025年の名目GDPとGDPデフレーターが与えられているとき、2025年の実質GDPを求める問題です。名目GDPは24000、GDPデフレーターは150です。

経済学GDP実質GDP名目GDPGDPデフレーター計算
2025/6/16

1から9までの数字が書かれた9枚のカードから4枚を選び、2桁の数を2つ作る。その2つの数の和が93となるような2桁の数の組み合わせが何通りあるかを求める。

組み合わせ数の性質整数
2025/6/16