解析学

微分、積分、極限などの解析学に関する問題

このカテゴリーの問題

以下の2つの関数 $f(x, y)$ が点 $(0, 0)$ で全微分可能かどうかを調べる問題です。 (1) $ f(x, y) = \begin{cases} \frac{x|y|}{\sqrt{x...

多変数関数全微分可能性偏微分極限
2025/6/27

関数 $f(x,y)$ が以下のように定義されています。 $f(x,y) = \begin{cases} |x|^\alpha |y|^\beta & (x,y) \neq (0,0) \\ 0 & ...

多変数関数方向微分係数全微分可能性
2025/6/27

## 問題

関数のグラフ微分漸近線増減極値
2025/6/27

定積分 $\int_{-1}^{2} (-x^2 + 5x - 4) \, dx$ を計算します。

定積分積分計算
2025/6/27

問題は2つのパート(2Aと2B)から構成されています。 * 2A: 関数 $f(x, y) = \sqrt{x^2 + y^2}$ について、与えられた点での微分可能性、接平面の方程式、法線の方程...

偏微分全微分接平面法線変数変換
2025/6/27

定積分 $\int_{-2}^{4} (-2) \, dx$ を計算してください。

定積分積分計算
2025/6/27

定積分 $\int_{1}^{3} (3x^2 - 1) \, dx$ を計算します。

定積分積分計算
2025/6/27

定積分 $\int_{-1}^{0} (x^2 + 3x - 1) dx$ を計算します。

定積分積分不定積分計算
2025/6/27

関数 $f(x) = e^{-ax} + x$ が与えられている。ただし、$a$ は正の数とする。 (1) $f(x)$ の最小値を与える $x$ の値を $a$ を用いて表せ。 (2) $f(x)$...

微分関数の最大最小指数関数対数関数
2025/6/27

定積分 $\int_{-2}^{1} (3x^2 - 4x + 5) dx$ を計算します。

定積分積分多項式関数
2025/6/27