解析学
微分、積分、極限などの解析学に関する問題
このカテゴリーの問題
$0 \le x \le \pi$ のとき、不等式 $\sin 2x + \sqrt{3} \sin x - \sqrt{3} \cos x > \frac{3}{2}$ を解く。
三角関数不等式三角関数の合成解の範囲
2025/4/7
(3) $2\sin^2\theta + 5\cos\theta < -1$ を $0 \le \theta < 2\pi$ の範囲で解け。 (4) $\sqrt{2}\cos(2\theta - \...
三角関数三角不等式不等式
2025/4/7
$\sqrt{2} \cos(2\theta - \frac{\pi}{4}) \geq 1$ を満たす $\theta$ の範囲を求めます。
三角関数不等式cos関数解の範囲
2025/4/7
以下の2つの定積分を求める問題です。 (1) $\int_{1}^{e} \frac{(\log x)^2}{x} dx$ (2) $\int_{0}^{1} x\sqrt{4-x^2} dx$
定積分置換積分積分
2025/4/7
定積分 $\int_{0}^{\pi} (x + \cos{x})^2 dx$ を計算し、結果を $\frac{1}{\boxed{1}}\pi^{\boxed{2}} + \frac{1}{\box...
定積分積分部分積分三角関数
2025/4/7
与えられた5つの定積分を計算し、空欄を埋める問題です。 (1) $\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} (\tan x + \frac{1}{\tan x})^2 ...
定積分三角関数指数関数積分計算
2025/4/7
与えられた5つの定積分を計算し、解答欄に適切な値を入力する問題です。
定積分三角関数指数関数対数関数積分計算
2025/4/7
関数 $f(x) = x^2 - 4\log(x^2 + 2x + 2)$ の最小値を求める問題です。
関数の最小値微分対数関数極値
2025/4/7
実数 $a$ が与えられたとき、関数 $f(x) = x^2 - |x-2| + \frac{a^2}{4}$ の最小値を $a$ を用いて表す。
関数の最小値絶対値場合分け平方完成
2025/4/7
次の不定積分を求めなさい。 $\int (-10x^4 + 8x^3 + 2x + 5) dx$
積分不定積分多項式
2025/4/7