解析学

微分、積分、極限などの解析学に関する問題

このカテゴリーの問題

関数 $f(x) = |x-1|$ が $x=1$ で微分可能でないことを示す問題です。

微分可能性絶対値関数極限
2025/6/15

積の導関数を求める公式 $\{f(x)g(x)\}' = f'(x)g(x) + f(x)g'(x)$ を用いて、以下の関数を微分する。 (4) $y = (2x^2 + 3x + 4)(3x - 2...

微分積の微分導関数
2025/6/15

与えられた関数を微分する問題です。以下の4つの関数について、それぞれ導関数を求めます。 (3) $r(v) = 1 - 3v + 2v^2$ (5) $x(t) = t^2 + \frac{4}{t^...

微分導関数関数
2025/6/15

関数 $f(x) = \frac{1}{x}$ の導関数を定義に従って求める。

導関数極限微分
2025/6/15

与えられた関数 $y = \log \frac{1+\sin x}{1-\sin x}$ を微分し、$y'$ を求める問題です。

微分対数関数三角関数合成関数の微分導関数
2025/6/15

与えられた関数 $y = \log(x + \sqrt{x^2 + 4})$ を微分して、$y'$ を求める問題です。

微分対数関数合成関数
2025/6/15

次の関数の導関数を求めます。 (1) $f(x) = \frac{1}{x}$ (2) $f(x) = x\sqrt{x}$

導関数微分べき乗の微分関数の微分
2025/6/15

次の関数の導関数を求めます。 (1) $f(x) = x^3$ (2) $f(x) = \sqrt[3]{x}$

微分導関数べき乗の微分
2025/6/15

(1) 関数 $f(x) = x^3 + ax + b$ が $x=-1$ で極大値4をとるとき、定数 $a, b$ の値を求め、極小値を求める。 (2) 関数 $f(x) = x^3 + ax^2 ...

微分極値3次関数増減
2025/6/15

2階線形同次微分方程式 $y'' + 2y' + y = 0$ の一般解を求める問題です。

微分方程式線形微分方程式特性方程式一般解重根
2025/6/15