幾何学

図形、空間、測量などの幾何学に関する問題

このカテゴリーの問題

4点 A(-2, 3), B(5, 4), C(3, -1) を頂点とする平行四辺形ABCDがある。対角線AC, BDの交点と頂点Dの座標を求める。

平行四辺形座標中点ベクトルの概念
2025/6/26

三角形ABCがあり、その頂点の座標がA(-5, -1), B(1, 2), C(4, 3)で与えられています。辺AB, BC, CAをそれぞれ2:3に外分する点P, Q, Rの座標を求めます。

座標外分点三角形座標平面
2025/6/26

与えられた三角形の2辺の長さ$a=4$, $b=5$と、その間の角$C=135^{\circ}$が与えられています。この三角形の残りの辺の長さ$c$を求める問題です。

三角形余弦定理辺の長さ角度
2025/6/26

## 1. 問題の内容

三角比三角関数正弦定理余弦定理三角形の面積
2025/6/26

$ \angle{A} $ は鋭角であり、$ \sin{A} = \frac{3}{5} $ であるとき、$ \cos{A} $ と $ \tan{A} $ の値を求める。

三角比sincostan鋭角鈍角
2025/6/26

与えられた式 $\frac{1}{\tan 150^{\circ}} + \cos 30^{\circ}$ の値を求めます。

三角比三角関数角度
2025/6/26

座標平面上に円 $K: x^2 + y^2 - 8x = 0$ があり、その中心を $C$ とする。点 $A(-1, 0)$ を通り、傾きが $a$ ($a$ は正の定数)である直線を $l$ とする...

直線接線点と直線の距離面積の最大値
2025/6/26

一辺の長さが2の正四面体ABCDがある。辺BCの中点をMとする。 (1) $\cos{\angle AMD}$の値を求めよ。 (2) 直線BCに関して点Dと対称な点をEとする。線分AEの長さを求めよ。...

空間図形正四面体余弦定理三平方の定理ベクトルの内積面積
2025/6/26

座標平面上に原点Oと2点A(1, 0), B(0, 1)がある。ベクトル $\vec{OP}$ が $\vec{OP} = s\vec{OA} + t\vec{OB}$ と表され、実数 $s, t$ ...

ベクトル座標平面領域不等式
2025/6/26

四角形ABCDにおいて、$\overrightarrow{AC} = 3\overrightarrow{AB} + 2\overrightarrow{AD}$ が成り立つ。ABを2:1に内分する点をP...

ベクトル空間ベクトル内分線分の比
2025/6/26