幾何学

図形、空間、測量などの幾何学に関する問題

このカテゴリーの問題

円に内接する四角形ABCDにおいて、AB=2, BC=$2\sqrt{2}$, CD=2, DA=$4\sqrt{2}$であるとき、対角線BDの長さと四角形ABCDの面積Sを求める。

円に内接する四角形余弦定理面積三角比
2025/4/15

ベクトル $\vec{a}$, $\vec{b}$ が $|\vec{a}| = 2$, $|\vec{b}| = 5$, $|\vec{a} - \vec{b}| = 3\sqrt{5}$ を満たす...

ベクトル内積ベクトルの大きさ
2025/4/15

$AB = AC = 2$, $\angle A = 30^\circ$ である三角形 $ABC$ がある。このとき、三角形 $ABC$ の面積と辺 $BC$ の長さを求める。

三角形面積余弦定理三角比
2025/4/15

平面上に三角形ABCと点Pがあり、$ \overrightarrow{AP} + 2\overrightarrow{BP} + 3\overrightarrow{CP} = \overrightarr...

ベクトル三角形ベクトルの分解内分点線形結合
2025/4/15

三角形ABCにおいて、点Gは三角形ABCの重心である。DEとBCが平行であるとき、AE:EGを求めよ。

三角形重心相似
2025/4/15

三角形ABCにおいて、点Gは重心である。以下の線分の長さを求めよ。 (1) BD (2) AG

三角形重心線分の長さ中線
2025/4/15

問題は2つあります。どちらも三角形ABCにおいて、点Iが内心であるという条件のもとで、角度$\alpha$を求める問題です。

三角形内心角度角の二等分線
2025/4/15

問題は2つあります。どちらも、三角形ABCにおいて点Iが内心であるとき、角$\alpha$を求める問題です。 (1) 角Aが50度の場合 (2) 角Bが20度、角Cが40度の場合

三角形内心角度
2025/4/15

問題147と148のそれぞれの図において、点Iは三角形ABCの内心である。それぞれの場合について角度αを求めよ。

三角形内心角度角の二等分線
2025/4/15

三角形ABCがあり、点Oは三角形ABCの内心です。角Bの大きさは55度、角Cの大きさは34度です。角BAOの大きさである$\beta$を求めます。

三角形内心角度角の二等分線
2025/4/15