最新の問題
半径2の円に内接する三角形ABCがあり、辺ABが直径である。$\cos A = \frac{1}{3}$であるとき、以下の問いに答えよ。 (1) 辺ACの長さを求めよ。 (2) 辺BCの長さを求めよ。
円三角形内接余弦ピタゴラスの定理
2025/7/18
$0^\circ < \theta < 180^\circ$のとき、$\sin\theta\cos\theta = -\frac{1}{2}$が与えられている。この条件下で、$\sin\theta +...
三角関数三角恒等式解の公式
2025/7/18
円に内接する四角形ABCDにおいて、$AB = 3$, $BC = 1$, $CD = 3$, $DA = 4$であるとき、$\angle BAD$の大きさを求める問題です。
円に内接する四角形余弦定理角度三角関数
2025/7/18
原点に点電荷 $q$ があるとき、位置ベクトル $\mathbf{r}$ の地点における電場 $\mathbf{E}$ を、$\mathbf{r}$ と原点からの距離 $r$ を用いて表す。電場の大き...
電磁気学ベクトル解析電場クーロンの法則
2025/7/18
問題は、スカラー場 $f$ が与えられたときに、その勾配 $\text{grad} f$ を求める問題、及びベクトル $\mathbf{r} = (x, y, z)$ と $r = \sqrt{x^2...
勾配ベクトル解析偏微分スカラー場
2025/7/18
自然数 $N$ を5進法で表すと3桁の数 $abc_{(5)}$ となり、7進法で表すと3桁の数 $cab_{(7)}$ となる。このとき、自然数 $N$ と、整数 $a, b, c$ を求める問題で...
進法整数方程式数の表現
2025/7/18
パラメータ $t$ で表された曲線 $r(t) = (a(t - \sin t), a(1 + \cos t))$ について、以下の問題を解く。 (1) 曲線を $r = (x(t), y(t))$ ...
曲線弧長接線ベクトル曲率曲率半径
2025/7/18
(1) 整数 $m$ に対して、$m^2$ を4で割った余りは0または1であることを示す。 (2) 自然数 $n, k$ が $25 \times 3^n = k^2 + 176$ を満たすとき、$n...
整数の性質合同式二次不定方程式
2025/7/18
X、Y、Zの3人がじゃんけんをし、1回目でXとYが勝ち残った。2回目のXとYのじゃんけんでXが勝つ確率を求める。答えは約分した分数で答える。
確率じゃんけん確率計算分数
2025/7/18
与えられた積分を計算し、その結果を示します。 積分は $\int \frac{dx}{\sqrt{x^2 + a}}$ であり、$a \neq 0$です。
積分置換積分双曲線関数不定積分
2025/7/18