解析学

微分、積分、極限などの解析学に関する問題

このカテゴリーの問題

与えられた2階線形非同次微分方程式 $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 2y = 2e^x$ の一般解を求める問題です。

微分方程式2階線形非同次微分方程式一般解特性方程式
2025/7/5

与えられた2階線形同次微分方程式 $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = 0$ の一般解を、特性方程式を用いて求める。

微分方程式線形微分方程式特性方程式一般解重解
2025/7/5

与えられた2階線形同次微分方程式 $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = 0$ の一般解を求める問題です。特性方程式を利用して解きます。

微分方程式線形微分方程式特性方程式一般解
2025/7/5

与えられた微分方程式 $x \frac{dy}{dx} - y = 1$ の一般解を定数変化法を用いて求める問題です。

微分方程式定数変化法一般解
2025/7/5

与えられた微分方程式 $\frac{dy}{dx} = y - 1$ の一般解を求める問題です。

微分方程式一般解積分
2025/7/5

方程式 $\frac{x^2}{4} - \frac{y^2}{9} = 1$ で定められる $x$ の関数 $y$ について、$\frac{dy}{dx}$ と $\frac{d^2y}{dx^2}...

微分陰関数微分二階微分双曲線
2025/7/5

与えられた級数 $S = 1 + 4x + 7x^2 + 10x^3 + \dots + (3n-2)x^{n-1}$ の和を求めよ。

級数等差数列等比数列
2025/7/5

$E = \{(x, y) : (x, y) \in \mathbb{R}^2, x^2 + y^2 \le 1\}$とする。$f: E \rightarrow \mathbb{R}$ を $E$ 上...

連続関数最大値最小値中間値の定理多変数関数
2025/7/5

関数 $f(x,y)$ と $g(x,y)$ が与えられています。ここで、 $f(x, y) = \begin{cases} \frac{x}{y}\arctan(\frac{y}{x}) - \fr...

極限偏微分多変数関数arctan
2025/7/5

$f: \mathbb{R}^2 \rightarrow \mathbb{R}$, $g: \mathbb{R}^2 \rightarrow \mathbb{R}$ が $\mathbb{R}^2$ ...

偏微分連鎖律調和関数複素解析
2025/7/5