解析学

微分、積分、極限などの解析学に関する問題

このカテゴリーの問題

与えられた4つの定積分を計算する問題です。 (1) $\int_{1}^{2} (3x^2 + 4x - 5) dx$ (2) $2\int_{1}^{3} (x-1) dx - \int_{1}^{...

定積分積分積分計算
2025/4/8

(1) $f'(x) = (3x+2)^2$ かつ $f(-1) = 0$ を満たす関数 $f(x)$ を求めよ。 (2) 曲線 $y = f(x)$ 上の点 $(x, y)$ における接線の傾きが ...

積分微分関数
2025/4/8

3次関数 $y = x^3 - 3x^2 - 5x$ のグラフと直線 $y = 4x + a$ の共有点の個数を、$a$ の値によって場合分けして求めます。

3次関数グラフ共有点微分増減極大極小
2025/4/8

$f'(x) = -6x^2 + 6x + 12 = -6(x^2 - x - 2) = -6(x - 2)(x + 1)$

最大値最小値微分三次関数四次関数増減表
2025/4/8

(1) 関数 $y = -2x^3 + 3x^2 - 6$ の極大値と極小値を求める。 (2) 関数 $y = x^3 + kx^2 + 3x + 1$ が常に単調に増加するときの定数 $k$ の値の...

微分極値単調増加判別式
2025/4/8

曲線 $C: y = x^3 + 1$ に点 $(0, -1)$ から引いた接線 $\ell$ の方程式と、曲線 $C$ と $\ell$ との接点を通り、$\ell$ に垂直な直線の方程式を求める問...

微分接線曲線方程式
2025/4/8

曲線 $y = x^4 - 4x$ 上の点 $(-1, 5)$ における接線の方程式と、曲線上の $x=0$ の点における接線の方程式を求める問題です。

微分接線導関数グラフ
2025/4/8

関数 $f(x) = x^3 - x^2$ について、以下の3つの問いに答える。 (1) $x$ が 1 から 4 まで変化するときの平均変化率 $m$ を求める。 (2) $x=a$ における $f...

微分平均変化率導関数微分係数二次方程式
2025/4/8

与えられた極限 $\lim_{n \to \infty} \frac{n^2}{3n+1}$ を計算します。問題文には、途中の式変形と答えが書かれていますが、ここでは手順を詳しく説明します。

極限数列不定形計算
2025/4/8

与えられた極限 $\lim_{n \to \infty} (n^2 - n)$ を計算し、式変形 $\lim_{n \to \infty} n^2 (1 - \frac{1}{n})$ の括弧内に適切...

極限数列式変形
2025/4/8