幾何学

図形、空間、測量などの幾何学に関する問題

このカテゴリーの問題

2つの直線 $2x+y-1=0$ と $x-2y-3=0$ の交点を通り、直線 $x+y+1=0$ に垂直な直線の方程式を求める問題です。

直線交点垂直方程式
2025/7/13

平面ABC上の点Pが $\overrightarrow{PA} + 2\overrightarrow{PB} + k\overrightarrow{PC} = \overrightarrow{0}$ ...

ベクトル平面ベクトル線形結合三角形位置ベクトル
2025/7/13

四面体OABCにおいて、辺ABの中点をMとする。このとき、ベクトル$\vec{OM}$は$\vec{OA}$と$\vec{OB}$で表され、さらに線分CMを1:2に内分する点をNとする。このとき、ベク...

ベクトル空間ベクトル四面体内分点
2025/7/13

三角形ABCの内部の点Pが $\vec{AP} + 3\vec{BP} + 2\vec{CP} = \vec{0}$ を満たす。 このとき、$\vec{AP} = \frac{1}{1} \vec{A...

ベクトル三角形内分点面積角度
2025/7/13

単位ベクトル $\vec{b}$ とベクトル $\vec{a}$ があり、$\vec{a}$ と $\vec{b}$ のなす角、$\vec{a} + \vec{b}$ と $\vec{b}$ のなす角...

ベクトル内積ベクトルの大きさ角度
2025/7/13

ベクトル $\vec{a}$ と $\vec{b}$, $\vec{a} + \vec{b}$ と $\vec{a} - \vec{b}$ のなす角がともに $\frac{\pi}{3}$ である。$...

ベクトル内積ベクトルの大きさ角度
2025/7/13

三角形ABCの内部に点Pがあり、$\vec{PA} + 3\vec{PB} + 5\vec{PC} = \vec{0}$ が成り立っている。 (1) $\vec{AP}$ を $\vec{AB}$, ...

ベクトル三角形面積比内分点
2025/7/13

三角形ABCにおいて、点D, Eはそれぞれ辺AB, BCの中点であり、DC // FEである。また、GはAEと辺CDの交点である。このとき、DG: FEを求める。

三角形中点連結定理相似
2025/7/13

三角形ABCにおいて、点D, Eはそれぞれ辺BC, CAの中点であり、AD//EFである。GはADと辺BEの交点である。このとき、GD:EFを求めよ。

三角形中点中線重心平行線
2025/7/13

三角形ABCにおいて、点Gが重心であり、点Dが直線AGと辺BCの交点である。AGの長さが6のとき、GDの長さを求め、さらに三角形GBDと三角形ABCの面積比を求める。

三角形重心面積比中線
2025/7/13