数論

整数、素数、合同式などの数論に関する問題

このカテゴリーの問題

7進法で表された循環小数 $0.\dot{3}\dot{5}_{(7)}$ を5進法の小数で表す問題です。

数進法循環小数数の変換
2025/6/5

(1) $0 \le M \le 99$ を満たす整数 $M$ のうち、$M(M-1)$ が $25$ で割り切れるものを全て求める。 (2) $100 \le N \le 199$ を満たす整数 $...

合同式整数の性質剰余
2025/6/5

正の整数を5進法で表すと3桁の数$abc_{(5)}$となり、これを3倍して9進法に直すと3桁の数$cba_{(9)}$になる。このような条件を満たす整数を10進法で表せ。

進法整数方程式
2025/6/5

(1) 8633と6052の最大公約数を求めます。 (2) 方程式 $8633x + 6052y = 1068$ の整数解を全て求めます。

最大公約数ユークリッドの互除法不定方程式整数解
2025/6/5

問題は、与えられた条件「自然数 $n$ は奇数である」の否定を求めることです。

命題否定奇数偶数自然数
2025/6/4

問題は以下の通りです。 (1) $0$ と $1$ の間にあって、分母が $3^n$ ($n$ は定まった正の整数) であり、分子が $3$ で割り切れない整数の分数の和を $S_n$ とする。$S_...

数列等比数列分数
2025/6/4

自然数 $1, 2, \dots, n$ から異なる2つを取り出して積を作り、それらの積の総和を求める問題です。

総和自然数組み合わせ計算
2025/6/4

有理数全体の集合を $Q$ とするとき、与えられた数が有理数であるか否かを判定し、$\in$ または $\notin$ の記号を $\square$ に入れる問題です。具体的には、 (1) $4 \s...

有理数集合
2025/6/4

数列$\{a_n\}$が、$a_1 = 1$, $a_2 = 1$, $a_n = a_{n-2} + a_{n-1}$ ($n = 3, 4, 5, \dots$)で定義されるとき、すべての正の整数...

数列数学的帰納法不等式フィボナッチ数列
2025/6/4

$\sqrt{2}$が無理数であることを用いて、$1+3\sqrt{2}$が無理数であることを背理法で証明する。

無理数背理法代数的数
2025/6/4