解析学

微分、積分、極限などの解析学に関する問題

このカテゴリーの問題

次の極限を求める問題です。ただし、$x > 0$ です。 $$\lim_{n \to \infty} n(\sqrt[n]{x} - 1)$$

極限指数関数対数関数微分
2025/6/7

放物線 $C: y = x^2 - 2x + 4$ が与えられている。 (1) 点 $(2, 0)$ から $C$ に引いた2本の接線の方程式を求める。 (2) $C$ および(1)で求めた2本の接線...

接線放物線積分面積
2025/6/7

与えられた6つの関数をそれぞれ$x$について微分する。

微分合成関数の微分商の微分
2025/6/7

xy平面上の曲線 $C: y = e^x$ について、以下の問いに答える。 (1) 点 $(a, e^a)$ における $C$ の接線の方程式を求めよ。 (2) 点 $(a, e^a)$ における $...

微分接線法線極限指数関数
2025/6/7

次の極限を求めます。 $\lim_{x \to \infty} (1 + \frac{a}{x})^x$

極限自然対数指数関数
2025/6/7

関数 $f(x) = \sqrt{7x-3} - 1$ について、以下の問題を解く。 (1) $f(x)$ の逆関数 $f^{-1}(x)$ を求める。 (2) 曲線 $y = f(x)$ と直線 $...

逆関数関数のグラフ不等式定義域
2025/6/7

$\int x \sin x \, dx$ を計算する問題です。

積分部分積分定積分
2025/6/7

与えられた積分の問題を解きます。積分は $\int \frac{x}{x^2 - 1} dx$ です。

積分置換積分不定積分
2025/6/7

与えられた積分 $\int \frac{e^x}{e^x - 1} dx$ を計算します。

積分置換積分指数関数対数関数
2025/6/7

与えられた関数 $y = \frac{2x}{x+3}$ の導関数を求めます。

導関数微分商の微分公式分数関数
2025/6/7