解析学
微分、積分、極限などの解析学に関する問題
このカテゴリーの問題
数列 $a_i$ と $b_i$ が与えられたとき、以下の総和を計算する問題です。 (1) $\sum_{i=1}^{7} a_i$ (2) $\sum_{i=2}^{6} a_i$ (3) $\su...
数列総和シグマ
2025/4/16
(1) $\cos\theta = -\frac{4}{5}$ のとき、$\sin\theta$ と $\tan\theta$ の値を、$\sin\theta > 0$ の場合と $\sin\thet...
三角関数三角関数の相互関係加法定理角度
2025/4/16
関数 $y = \sin x + \cos 2x$ について、$0 \le x < 2\pi$ の範囲における $y$ のとりうる値の範囲を求めよ。
三角関数最大値最小値関数のグラフ平方完成
2025/4/16
問題は3つに分かれています。 * **問題1:** (a) 与えられた関数 $f(x)$ の一階導関数と二階導関数 $\frac{d^2f}{dx^2}$ を求め、特定の関数の極値を判定し...
微分導関数極値積分不定積分部分積分運動
2025/4/16
関数 $\frac{ab}{(x+h)^2}$ を$x$で微分してください。ここで、$a, b, h$は定数です。
微分連鎖律関数
2025/4/16
放物線 $y = x^2 - 2\sqrt{2}x + 4$ 上の点 $R(a, b)$ ($a > \sqrt{2}$) における接線と直線 $x=a$ のなす角を $\theta$ ($0 < \...
微分接線放物線三角関数定点
2025/4/16
放物線 $y=x^2 - 2\sqrt{2}x + 4$ 上の点 $R(a, b)$ ($a > \sqrt{2}$) における接線と直線 $x=a$ のなす角を $\theta$ ($0 < \th...
接線微分放物線三角関数定点
2025/4/16
画像に書かれた式と文章の意味を説明する問題です。 まず、式は次の通りです。 $\lim_{x \to a} (x-a) \cdot \lim_{x \to a} \frac{f(x) - f(a)}{...
極限微分微分可能性導関数
2025/4/15
問題文は、$ \lim_{x \to a} \frac{f(x) - f(a)}{x-a} = f'(a) $ が $f'(a)$ が極限値を持つことを意味するか、と問うています。これは微分可能性に関...
微分極限微分係数微分可能性
2025/4/15
画像に書かれた数式の意味と、それに関連する記述について解説を求める問題です。特に、極限の計算と、微分可能性との関係、そして導関数と極値の関係について問われています。
極限微分可能性導関数極値連続性
2025/4/15