数論

整数、素数、合同式などの数論に関する問題

このカテゴリーの問題

整数 $n$ について、$n^2$ が5の倍数ならば、$n$ は5の倍数であることを証明する。

整数の性質倍数対偶証明法合同式
2025/5/18

実数 $x$ が正の無理数であるとき、$\sqrt{x}$ は無理数であることを証明する問題です。

無理数有理数背理法平方根証明
2025/5/18

正の偶数の列を、第 $n$ 群に $(2n-1)$ 個の数が入るように群に分ける。 (1) 第 $n$ 群の最初の数を $n$ の式で表す。 (2) 第10群に入るすべての数の和 $S$ を求める。

数列等差数列群数列偶数和の公式
2025/5/18

$2^l 3^m 5^n$ ($l, m, n$は自然数)の形で表される数で、500以下のものの個数とそれらの総和を求める。

整数の性質素因数分解不等式約数
2025/5/17

整数 $n$ について、「$3n$ が偶数ならば、$n$ は偶数である」という命題を、対偶を利用して証明する。

命題対偶整数偶数奇数証明
2025/5/17

整数 $n$ について、「$3n$が偶数ならば、$n$は偶数である」という命題を、対偶を利用して証明する。

命題対偶整数偶数奇数証明
2025/5/17

任意の整数 $n$ に対して、$n^7 - 6n^6 - 5n^5 + 6n^4 + 4n^3$ が18の倍数であることを示す問題です。

整数の性質倍数因数分解合同式
2025/5/17

任意の整数 $n$ に対して、$n^7 - 6n^6 - 5n^5 + 6n^4 + 4n^3$ が18の倍数であることを示す問題です。

整数の性質因数分解倍数合同式
2025/5/17

問題は、与えられた数 (1) 16 と (2) 360 の正の約数の個数をそれぞれ求める問題です。

約数素因数分解整数の性質
2025/5/17

問題は、次の2つの不定方程式の整数解をすべて求めることです。 (1) $12x - 17y = 2$ (2) $71x + 32y = 3$

不定方程式整数解ユークリッドの互除法
2025/5/17