数論
整数、素数、合同式などの数論に関する問題
このカテゴリーの問題
$a$ を正の整数とするとき、$a$ が $a+4$ の約数となるような $a$ の個数を求める問題です。
約数整数の性質割り算
2025/4/16
$3^{100}$ を 13 で割ったときの余りを求める。
合同算術剰余指数
2025/4/16
$n$ を自然数とするとき、$n^3 + 5n$ が6の倍数であることを証明します。
整数の性質倍数証明因数分解
2025/4/15
$n$ が正の整数のとき、$n > 3$ ならば、$n! > 2^n$ が成り立つことを数学的帰納法で証明する。
数学的帰納法階乗不等式
2025/4/15
$n$を自然数とするとき、$\sqrt{50-n^2}$の値が整数となるような$n$の個数を求める。
平方根整数の性質平方数自然数
2025/4/15
4桁の整数 $N$ がある。ただし、一の位は0ではない。$N$ の桁の順番を逆にしたものを $R(N)$ とする。$R(N) = 4N + 3$ を満たす $N$ を全て求める。
整数の性質方程式桁
2025/4/15
問題は、整数の性質に関する穴埋め問題と、素数を答える問題、素因数分解に関する穴埋め問題です。具体的には、以下の3つの問題が含まれています。 * 1以上の整数に関する用語の定義と例に関する穴埋め。 ...
整数の性質約数素数素因数分解
2025/4/15
$n$ を自然数とする。$\sqrt[8]{\sqrt[3]{90n}+1}$ の形で表せない素数はあるか、という問題です。
素数整数の性質代数
2025/4/14
与えられた対数の値($\log_{10}2 = 0.3010$, $\log_{10}3 = 0.4771$, $\log_{10}7 = 0.8451$)を使って、以下の問題を解きます。 (1) $...
対数桁数剰余1の位数の性質
2025/4/14
$am = 10^n - 1$ を満たす正の整数の組 $(m, n)$ が存在する整数 $a$ の条件を求める問題です。
整数の性質約数倍数合同式
2025/4/14